95 lines
3.2 KiB
Python
95 lines
3.2 KiB
Python
import time
|
|
import torch
|
|
import numpy as np
|
|
|
|
import queue
|
|
from queue import Queue
|
|
import multiprocessing as mp
|
|
|
|
from wav2lip import audio
|
|
|
|
class LipASR:
|
|
def __init__(self, opt):
|
|
self.opt = opt
|
|
|
|
self.fps = opt.fps # 20 ms per frame
|
|
self.sample_rate = 16000
|
|
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
|
self.queue = Queue()
|
|
# self.input_stream = BytesIO()
|
|
self.output_queue = mp.Queue()
|
|
|
|
#self.audio_processor = audio_processor
|
|
self.batch_size = opt.batch_size
|
|
|
|
self.frames = []
|
|
self.stride_left_size = opt.l
|
|
self.stride_right_size = opt.r
|
|
#self.context_size = 10
|
|
self.feat_queue = mp.Queue(5)
|
|
|
|
self.warm_up()
|
|
|
|
def put_audio_frame(self,audio_chunk): #16khz 20ms pcm
|
|
self.queue.put(audio_chunk)
|
|
|
|
def __get_audio_frame(self):
|
|
try:
|
|
frame = self.queue.get(block=True,timeout=0.01)
|
|
type = 0
|
|
#print(f'[INFO] get frame {frame.shape}')
|
|
except queue.Empty:
|
|
frame = np.zeros(self.chunk, dtype=np.float32)
|
|
type = 1
|
|
|
|
return frame,type
|
|
|
|
def get_audio_out(self): #get origin audio pcm to nerf
|
|
return self.output_queue.get()
|
|
|
|
def warm_up(self):
|
|
for _ in range(self.stride_left_size + self.stride_right_size):
|
|
audio_frame,type=self.__get_audio_frame()
|
|
self.frames.append(audio_frame)
|
|
self.output_queue.put((audio_frame,type))
|
|
for _ in range(self.stride_left_size):
|
|
self.output_queue.get()
|
|
|
|
def run_step(self):
|
|
############################################## extract audio feature ##############################################
|
|
# get a frame of audio
|
|
for _ in range(self.batch_size*2):
|
|
frame,type = self.__get_audio_frame()
|
|
self.frames.append(frame)
|
|
# put to output
|
|
self.output_queue.put((frame,type))
|
|
# context not enough, do not run network.
|
|
if len(self.frames) <= self.stride_left_size + self.stride_right_size:
|
|
return
|
|
|
|
inputs = np.concatenate(self.frames) # [N * chunk]
|
|
mel = audio.melspectrogram(inputs)
|
|
#print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames))
|
|
# cut off stride
|
|
left = max(0, self.stride_left_size*80/50)
|
|
right = min(len(mel[0]), len(mel[0]) - self.stride_right_size*80/50)
|
|
mel_idx_multiplier = 80.*2/self.fps
|
|
mel_step_size = 16
|
|
i = 0
|
|
mel_chunks = []
|
|
while i < (len(self.frames)-self.stride_left_size-self.stride_right_size)/2:
|
|
start_idx = int(left + i * mel_idx_multiplier)
|
|
#print(start_idx)
|
|
if start_idx + mel_step_size > len(mel[0]):
|
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
|
else:
|
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
|
i += 1
|
|
self.feat_queue.put(mel_chunks)
|
|
|
|
# discard the old part to save memory
|
|
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
|
|
|
|
|
|
def get_next_feat(self,block,timeout):
|
|
return self.feat_queue.get(block,timeout) |