livetalking/musetalk/models/unet.py

48 lines
1.5 KiB
Python
Executable File

import torch
import torch.nn as nn
import math
import json
from diffusers import UNet2DConditionModel
import sys
import time
import numpy as np
import os
class PositionalEncoding(nn.Module):
def __init__(self, d_model=384, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
b, seq_len, d_model = x.size()
pe = self.pe[:, :seq_len, :]
x = x + pe.to(x.device)
return x
class UNet():
def __init__(self,
unet_config,
model_path,
use_float16=False,
):
with open(unet_config, 'r') as f:
unet_config = json.load(f)
self.model = UNet2DConditionModel(**unet_config)
self.pe = PositionalEncoding(d_model=384)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
weights = torch.load(model_path) if torch.cuda.is_available() else torch.load(model_path, map_location=self.device)
self.model.load_state_dict(weights)
if use_float16:
self.model = self.model.half()
self.model.to(self.device)
if __name__ == "__main__":
unet = UNet()