zkdog/ZKDogApi/zkmetatest.py

374 lines
13 KiB
Python
Raw Normal View History

2023-12-22 14:59:28 +08:00
import sys
import time
from typing import List
sys.path.append("../ZKMetaUnit")
import src.robot_interface as sdk
from utils import MQTT, Gyro, parse_robot_state
import math
HIGHLEVEL = 0xee
LOWLEVEL = 0xff
def calculate_movement(gyro_data, accel_data, time_step, initial_angle=0):
"""
Calculate the movement of an object based on gyroscope and accelerometer data.
Parameters:
gyro_data (list): List of gyroscope data (in radians).
accel_data (list): List of accelerometer data (in m/s^2).
time_step (float): Time step in seconds.
initial_angle (float): Initial angle in radians.
Returns:
(movement_x, movement_y, movement_z): The movement of the object in each axis.
"""
movement = [0, 0, 0] # x, y, z movement
angle = initial_angle # Current angle
for i in range(len(gyro_data)):
if i == 0:
last_angle = angle
else:
angle += gyro_data[i] * time_step # Update angle
movement[2] += (angle - last_angle) * accel_data[i] * time_step # Calculate z movement using angle and acceleration
last_angle = angle
movement[0] += math.sin(angle) * accel_data[i] * time_step # Calculate x movement using angle and acceleration
movement[1] -= math.cos(angle) * accel_data[i] * time_step # Calculate y movement using angle and acceleration
return movement
class ZKDOG:
def __init__(self) -> None:
self.udp = sdk.UDP(HIGHLEVEL, 8080, "192.168.123.161", 8082)
self.cmd = sdk.HighCmd()
self.state = sdk.HighState()
self.udp.InitCmdData(self.cmd)
self.udp.Recv()
self.udp.GetRecv(self.state)
self.cmd.gaitType = 0
self.cmd.speedLevel = 0
self.cmd.footRaiseHeight = 0
self.cmd.bodyHeight = 0
self.cmd.euler = [0, 0, 0]
self.cmd.velocity = [0, 0]
self.cmd.yawSpeed = 0.0
self.cmd.reserve = 0
self.flag = 1
self.mq = MQTT()
self.mq.run()
def moving_unlocked(self, times: int = 1000):
while times > 0:
time.sleep(0.002)
self.udp.Recv()
self.udp.GetRecv(self.state)
self.recovery()
self.cmd.mode = 6
times -= 1
self.udp.SetSend(self.cmd)
self.udp.Send()
def recovery(self):
self.cmd.mode = 0
self.cmd.gaitType = 0
self.cmd.speedLevel = 0
self.cmd.footRaiseHeight = 0
self.cmd.bodyHeight = 0
self.cmd.euler = [0, 0, 0]
self.cmd.velocity = [0, 0]
self.cmd.yawSpeed = 0.0
self.cmd.reserve = 0
def forward(self, times: int = 1000, gaitType: int = 0,
velocaity: List=[0.1, 0], yawSpeed: int =0, footRaiseHeight: float=0.1):
'''
description: moving
@param times
@gaitType DO NOT MODIFICATION
@velocaity float The value interval is [-1.0, 1.0]. Positive numbers are forward, negative numbers are backward.
Notice: do not modify the second value
@yawSpeed int Rotational speed. Negative numbers are left turns, positive numbers are right turns
0 means do not rotate.
@footRaiseHeight float Foot elevation. Must be positive numbers.
return {*}
'''
if self.flag == 0:
return False
if self.flag == 1:
self.moving_unlocked()
while times > 0:
time.sleep(0.05)
self.udp.Recv()
self.udp.GetRecv(self.state)
self.recovery()
self.cmd.mode = 2
self.cmd.gaitType = gaitType
self.cmd.velocity = velocaity # -1 ~ +1
self.cmd.yawSpeed = yawSpeed
self.cmd.footRaiseHeight = footRaiseHeight
self.udp.SetSend(self.cmd)
self.udp.Send()
times -= 1
self.is_sitdown = False
self.is_standup = True
return True
def move(self, tag: int = 50, gaitType: int = 0,
velocaity: List=[0.1, 0], yawSpeed: int = 0 , footRaiseHeight: float=0.1):
'''
description: moving
@param times
@gaitType DO NOT MODIFICATION
@velocaity float The value interval is [-1.0, 1.0]. Positive numbers are forward, negative numbers are backward.
Notice: do not modify the second value
@yawSpeed int Rotational speed. Negative numbers are left turns, positive numbers are right turns
0 means do not rotate.
@footRaiseHeight float Foot elevation. Must be positive numbers.
return {*}
'''
if self.flag == 0:
return False
if self.flag == 1:
self.moving_unlocked()
while tag > 0:
time.sleep(0.05)
with self.mq.lock:
robot_state = parse_robot_state(self.mq.bytes)
temp = robot_state["rpy"][2]
print(robot_state)
gyro_data, accel_data = [], []
gyro_data.append(self.state.imu.gyroscope[0])
accel_data.append(self.state.imu.accelerometer[0])
if tag ==1:
print(calculate_movement(gyro_data=gyro_data, accel_data=accel_data, time_step=0.05*tag))
self.udp.Recv()
self.udp.GetRecv(self.state)
self.recovery()
self.cmd.mode = 2
self.cmd.gaitType = gaitType
if tag <= 20:
self.cmd.velocity = 0.05
else:
self.cmd.velocity = velocaity # -1 ~ +1
self.cmd.yawSpeed = yawSpeed
self.cmd.footRaiseHeight = footRaiseHeight
self.udp.SetSend(self.cmd)
self.udp.Send()
tag -= 1
self.is_sitdown = False
self.is_standup = True
return True
def turn_left(self, tag: int = 90, gaitType: int = 0,
velocaity: List=[0, 0], yawSpeed: int = 1, footRaiseHeight: float=0.1):
'''
description: moving
@param times
@gaitType DO NOT MODIFICATION
@velocaity float The value interval is [-1.0, 1.0]. Positive numbers are forward, negative numbers are backward.
Notice: do not modify the second value
@yawSpeed int Rotational speed. Negative numbers are left turns, positive numbers are right turns
0 means do not rotate.
@footRaiseHeight float Foot elevation. Must be positive numbers.
return {*}
'''
if self.flag == 0:
return False
if self.flag == 1:
self.moving_unlocked()
with self.mq.lock:
robot_state = parse_robot_state(self.mq.bytes)
temp = robot_state["rpy"][2]
gyro = Gyro(yaw_start=temp)
while gyro.get_corr_left_turn_angle() < tag:
time.sleep(0.05)
with self.mq.lock:
robot_state = parse_robot_state(self.mq.bytes)
gyro.update(robot_state["rpy"][2])
# with self.mq.lock:
# robot_state = parse_robot_state(self.mq.bytes)
# print("temp=>",temp,robot_state["rpy"], "step=>",gyro.get_corr_left_turn_angle(), "tag=>",tag, "self.cmd.yawSpeed", self.cmd.yawSpeed)
# print(f"左转角度: {gyro.get_corr_left_turn_angle()},右转角度: {gyro.get_right_turn_angle()}")
self.udp.Recv()
self.udp.GetRecv(self.state)
self.recovery()
self.cmd.mode = 2
self.cmd.gaitType = gaitType
self.cmd.velocity = velocaity # -1 ~ +1
if tag-gyro.get_corr_left_turn_angle() <= 20:
self.cmd.yawSpeed = max((tag-gyro.get_corr_left_turn_angle())/20, 0.1)
else:
self.cmd.yawSpeed = yawSpeed
self.cmd.footRaiseHeight = footRaiseHeight
self.udp.SetSend(self.cmd)
self.udp.Send()
return True
def turn_right(self, tag: int = 90, gaitType: int = 0,
velocaity: List=[0, 0], yawSpeed: int = -1, footRaiseHeight: float=0.1):
'''
description: moving
@param times
@gaitType DO NOT MODIFICATION
@velocaity float The value interval is [-1.0, 1.0]. Positive numbers are forward, negative numbers are backward.
Notice: do not modify the second value
@yawSpeed int Rotational speed. Negative numbers are left turns, positive numbers are right turns
0 means do not rotate.
@footRaiseHeight float Foot elevation. Must be positive numbers.
return {*}
'''
if self.flag == 0:
return False
if self.flag == 1:
self.moving_unlocked()
with self.mq.lock:
robot_state = parse_robot_state(self.mq.bytes)
gyro = Gyro(yaw_start=robot_state["rpy"][2])
while gyro.get_corr_right_turn_angle() < tag:
time.sleep(0.05)
with self.mq.lock:
robot_state = parse_robot_state(self.mq.bytes)
gyro.update(robot_state["rpy"][2])
self.udp.Recv()
self.udp.GetRecv(self.state)
self.recovery()
self.cmd.mode = 2
self.cmd.gaitType = gaitType
self.cmd.velocity = velocaity # -1 ~ +1
if tag-gyro.get_corr_right_turn_angle() <= 20:
self.cmd.yawSpeed = min(-(tag-gyro.get_corr_right_turn_angle())/20, -0.1)
else:
self.cmd.yawSpeed = yawSpeed
self.cmd.footRaiseHeight = footRaiseHeight
self.udp.SetSend(self.cmd)
self.udp.Send()
return True
def sitdown(self):
'''
description: sitdown
return {*}
'''
if self.flag == 0:
return False
if self.flag == 1:
times = 0
sitdown_cmd = [1, 6, 5, 7]
# 1 -> 6 -> 5 -> 7
while times < 4000:
time.sleep(0.002)
# self.recovery()
self.cmd.mode = sitdown_cmd[times//1000]
print(f"cmd mode is {self.cmd.mode}")
times += 1
self.udp.SetSend(self.cmd)
self.udp.Send()
self.flag = 0
return True
def standup(self):
'''
description: stand up
return {*}
'''
times = 0
standup_cmd = [7, 5, 6]
if self.flag == 1:
return False
if self.flag == 0:
while times < 3000:
time.sleep(0.002)
self.cmd.mode = standup_cmd[times//1000]
times += 1
self.udp.SetSend(self.cmd)
print(self.cmd.mode)
self.udp.Send()
self.flag = 1
return True
def getcurrenrstate(self):
return self.state.mode
if __name__=="__main__":
go1 = ZKDOG()
def get_args(k, v):
round = {
"turn-left": {
"times": v,
"velocaity": 0,
"yawSpeed": 1,
"footRaiseHeight": 0
},
"turn-right": {
"times": 90,
"velocaity": 0,
"yawSpeed": -0.5,
"footRaiseHeight": 0
},
"up": {
"times": int(450+750*float(v)),
"velocaity": 0.5,
"yawSpeed": 0,
"footRaiseHeight": 0.1
},
"down": {
"times": int(450+750*float(v)),
"velocaity": -0.5,
"yawSpeed": 0,
"footRaiseHeight": 0.1
}
}
return round[k]
def main(k, v):
# go1.sitdown()
# go1.standup()
# go1.forward(velocaity=[-0.2, 0], yawSpeed=-3)
new_args = get_args(k=k, v=v)
print(new_args)
times = new_args.get("times")
velocaity = new_args.get("velocaity")
yawSpeed = new_args.get("yawSpeed")
footRaiseHeight = new_args.get("footRaiseHeight")
res = go1.forward_copy(tag=times, velocaity=[velocaity, 0], yawSpeed=yawSpeed,
footRaiseHeight = footRaiseHeight)
print(res)
# ************测试*******************
# go1.sitdown()
# go1.standup()
# # 前进
# main(k="up", v=0.5)
# 左转
# main(k="turn-left", v=180)
# go1.turn_right()
# go1.turn_left()
go1.move()
# 右转
# main(k="turn-right", v=90)
# # 左转
# main(k="turn-left", v=180)
# # 右转
# main(k="turn-right", v=180)