parkour/legged_gym/legged_gym/envs/a1/a1_leap_config.py

110 lines
4.2 KiB
Python

import numpy as np
from legged_gym.envs.a1.a1_field_config import A1FieldCfg, A1FieldCfgPPO
from legged_gym.utils.helpers import merge_dict
class A1LeapCfg( A1FieldCfg ):
#### uncomment this to train non-virtual terrain
# class sensor( A1FieldCfg.sensor ):
# class proprioception( A1FieldCfg.sensor.proprioception ):
# delay_action_obs = True
# latency_range = [0.04-0.0025, 0.04+0.0075]
#### uncomment the above to train non-virtual terrain
class env(A1FieldCfg.env):
num_envs = 4096
class terrain( A1FieldCfg.terrain ):
max_init_terrain_level = 2
border_size = 5
slope_treshold = 20.
curriculum = True
BarrierTrack_kwargs = merge_dict(A1FieldCfg.terrain.BarrierTrack_kwargs, dict(
options= [
"leap",
],
leap= dict(
length= (0.5, 1.5),
depth= (0.4, 0.8),
height= 0.2,
),
virtual_terrain= True, # Change this to False for real terrain
no_perlin_threshold= 0.06,
))
TerrainPerlin_kwargs = merge_dict(A1FieldCfg.terrain.TerrainPerlin_kwargs, dict(
zScale= [0.05, 0.1],
))
class commands( A1FieldCfg.commands ):
class ranges( A1FieldCfg.commands.ranges ):
lin_vel_x = [1.5, 3.0]
lin_vel_y = [0.0, 0.0]
ang_vel_yaw = [0., 0.]
class termination( A1FieldCfg.termination ):
# additional factors that determines whether to terminates the episode
termination_terms = [
"roll",
"pitch",
"z_low",
"z_high",
"out_of_track",
]
roll_kwargs = merge_dict(A1FieldCfg.termination.roll_kwargs, dict(
threshold= 0.4,
leap_threshold= 0.4,
))
z_high_kwargs = merge_dict(A1FieldCfg.termination.z_high_kwargs, dict(
threshold= 2.0,
))
class rewards( A1FieldCfg.rewards ):
class scales:
tracking_ang_vel = 0.05
world_vel_l2norm = -1.
legs_energy_substeps = -1e-6
alive = 1. # 2.
penetrate_depth = -4e-3
penetrate_volume = -4e-3
exceed_dof_pos_limits = -1e-1
exceed_torque_limits_i = -2e-1
lin_pos_x = 1.
# track_predict_vel_l2norm = -1.
soft_dof_pos_limit = 0.9
class curriculum( A1FieldCfg.curriculum ):
penetrate_volume_threshold_harder = 9000
penetrate_volume_threshold_easier = 10000
penetrate_depth_threshold_harder = 300
penetrate_depth_threshold_easier = 5000
class A1LeapCfgPPO( A1FieldCfgPPO ):
class algorithm( A1FieldCfgPPO.algorithm ):
entropy_coef = 0.0
clip_min_std = 0.2
lin_vel_x = [0.5, 3.0]
command_scale = 2.0
class runner( A1FieldCfgPPO.runner ):
policy_class_name = "ActorCriticRecurrent"
experiment_name = "field_a1"
run_name = "".join(["Skill",
("Multi" if len(A1LeapCfg.terrain.BarrierTrack_kwargs["options"]) > 1 else (A1LeapCfg.terrain.BarrierTrack_kwargs["options"][0] if A1LeapCfg.terrain.BarrierTrack_kwargs["options"] else "PlaneWalking")),
("_propDelay{:.2f}-{:.2f}".format(
A1LeapCfg.sensor.proprioception.latency_range[0],
A1LeapCfg.sensor.proprioception.latency_range[1],
) if A1LeapCfg.sensor.proprioception.delay_action_obs else ""
),
("_pEnergySubsteps{:.0e}".format(A1LeapCfg.rewards.scales.legs_energy_substeps) if A1LeapCfg.rewards.scales.legs_energy_substeps != -2e-6 else ""),
("_virtual" if A1LeapCfg.terrain.BarrierTrack_kwargs["virtual_terrain"] else ""),
])
resume = True
# load_run = "{Your traind walking model directory}"
# load_run = "May16_18-12-08_WalkingBase_pEnergySubsteps2e-5_aScale0.5"
load_run = "Leap_2m_2500"
# load_run = "May15_21-34-27_Skillleap_pEnergySubsteps-1e-06_virtual"#"May15_17-07-38_WalkingBase_pEnergySubsteps2e-5_aScale0.5"
# load_run = "{Your virtually trained leap model directory}"
max_iterations = 20000
save_interval = 500