parkour/rsl_rl/rsl_rl/modules/actor_critic_recurrent.py

132 lines
5.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Copyright (c) 2021 ETH Zurich, Nikita Rudin
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Normal
from torch.nn.modules import rnn
from .actor_critic import ActorCritic, get_activation
from rsl_rl.utils import unpad_trajectories
class ActorCriticRecurrent(ActorCritic):
is_recurrent = True
def __init__(self, num_actor_obs,
num_critic_obs,
num_actions,
actor_hidden_dims=[256, 256, 256],
critic_hidden_dims=[256, 256, 256],
activation='elu',
rnn_type='lstm',
rnn_hidden_size=256,
rnn_num_layers=1,
init_noise_std=1.0,
**kwargs):
super().__init__(num_actor_obs=rnn_hidden_size,
num_critic_obs=rnn_hidden_size,
num_actions=num_actions,
actor_hidden_dims=actor_hidden_dims,
critic_hidden_dims=critic_hidden_dims,
activation=activation,
init_noise_std=init_noise_std,
**kwargs,
)
activation = get_activation(activation)
self.velocity_planner = nn.Sequential(
nn.Linear(num_actor_obs-3, 256),
nn.ELU(),
nn.Linear(256, 128),
nn.ELU(),
nn.Linear(128, 1),
nn.Tanh()
)
self.lin_vel_x = kwargs["lin_vel_x"]
self.memory_a = Memory(num_actor_obs, type=rnn_type, num_layers=rnn_num_layers, hidden_size=rnn_hidden_size)
self.memory_c = Memory(num_critic_obs, type=rnn_type, num_layers=rnn_num_layers, hidden_size=rnn_hidden_size)
print(f"Actor RNN: {self.memory_a}")
print(f"Critic RNN: {self.memory_c}")
def reset(self, dones=None):
self.memory_a.reset(dones)
self.memory_c.reset(dones)
def act(self, observations, masks=None, hidden_states=None):
vel_obs = torch.cat([observations[:, :9], observations[:, 12:]], dim=1)
velocity = self.velocity_planner(vel_obs)
velocity = torch.clip(velocity, self.lin_vel_x[0], self.lin_vel_x[1])
self.velocity = velocity
observations[:, 9] = velocity
input_a = self.memory_a(observations, masks, hidden_states)
return super().act(input_a.squeeze(0))
def act_inference(self, observations):
input_a = self.memory_a(observations)
return super().act_inference(input_a.squeeze(0))
def evaluate(self, critic_observations, masks=None, hidden_states=None):
input_c = self.memory_c(critic_observations, masks, hidden_states)
return super().evaluate(input_c.squeeze(0))
def get_hidden_states(self):
return self.memory_a.hidden_states, self.memory_c.hidden_states
class Memory(torch.nn.Module):
def __init__(self, input_size, type='lstm', num_layers=1, hidden_size=256):
super().__init__()
# RNN
rnn_cls = nn.GRU if type.lower() == 'gru' else nn.LSTM
self.rnn = rnn_cls(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
self.hidden_states = None
def forward(self, input, masks=None, hidden_states=None):
batch_mode = masks is not None
if batch_mode:
# batch mode (policy update): need saved hidden states
if hidden_states is None:
raise ValueError("Hidden states not passed to memory module during policy update")
out, _ = self.rnn(input, hidden_states)
out = unpad_trajectories(out, masks)
else:
# inference mode (collection): use hidden states of last step
out, self.hidden_states = self.rnn(input.unsqueeze(0), self.hidden_states)
return out
def reset(self, dones=None):
# When the RNN is an LSTM, self.hidden_states_a is a list with hidden_state and cell_state
if self.hidden_states is None:
return
for hidden_state in self.hidden_states:
hidden_state[..., dones, :] = 0.0