parkour/onboard_codes/go2/go2_run.py

184 lines
6.9 KiB
Python

import rclpy
from rclpy.node import Node
from unitree_ros2_real import UnitreeRos2Real, get_euler_xyz
import os
import os.path as osp
import json
import time
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from rsl_rl import modules
class ZeroActModel(torch.nn.Module):
def __init__(self, angle_tolerance= 0.15, delta= 0.2):
super().__init__()
self.angle_tolerance = angle_tolerance
self.delta = delta
def forward(self, dof_pos):
target = torch.zeros_like(dof_pos)
diff = dof_pos - target
diff_large_mask = torch.abs(diff) > self.angle_tolerance
target[diff_large_mask] = dof_pos[diff_large_mask] \
- self.delta * torch.sign(diff[diff_large_mask])
return target
class Go2Node(UnitreeRos2Real):
def __init__(self, *args, **kwargs):
super().__init__(*args, robot_class_name= "Go2", **kwargs)
def register_models(self, stand_model, task_model, task_policy):
self.stand_model = stand_model
self.task_model = task_model
self.task_policy = task_policy
self.use_stand_policy = True # Start with standing model
def start_main_loop_timer(self, duration):
self.main_loop_timer = self.create_timer(
duration, # in sec
self.main_loop,
)
def main_loop(self):
if (self.joy_stick_buffer.keys & self.WirelessButtons.L1) and self.use_stand_policy:
self.get_logger().info("L1 pressed, stop using stand policy")
self.use_stand_policy = False
if self.use_stand_policy:
obs = self._get_dof_pos_obs() # do not multiply by obs_scales["dof_pos"]
action = self.stand_model(obs)
if (action == 0).all():
self.get_logger().info("All actions are zero, it's time to switch to the policy", throttle_duration_sec= 1)
# else:
# print("maximum dof error: {:.3f}".format(action.abs().max().item(), end= "\r"))
self.send_action(action / self.action_scale)
else:
# start_time = time.monotonic()
obs = self.get_obs()
# obs_time = time.monotonic()
action = self.task_policy(obs)
# policy_time = time.monotonic()
self.send_action(action)
# self.send_action(self._get_dof_pos_obs() / self.action_scale)
# publish_time = time.monotonic()
# print(
# "obs_time: {:.5f}".format(obs_time - start_time),
# "policy_time: {:.5f}".format(policy_time - obs_time),
# "publish_time: {:.5f}".format(publish_time - policy_time),
# )
if (self.joy_stick_buffer.keys & self.WirelessButtons.Y):
self.get_logger().info("Y pressed, reset the policy")
self.task_model.reset()
@torch.inference_mode()
def main(args):
rclpy.init()
assert args.logdir is not None, "Please provide a logdir"
with open(osp.join(args.logdir, "config.json"), "r") as f:
config_dict = json.load(f, object_pairs_hook= OrderedDict)
# modify the config_dict if needed
config_dict["control"]["computer_clip_torque"] = True
duration = config_dict["sim"]["dt"] * config_dict["control"]["decimation"] # in sec
device = "cuda"
env_node = Go2Node(
"go2",
# low_cmd_topic= "low_cmd_dryrun", # for the dryrun safety
cfg= config_dict,
replace_obs_with_embeddings= ["forward_depth"],
model_device= device,
dryrun= not args.nodryrun,
)
model = getattr(modules, config_dict["runner"]["policy_class_name"])(
num_actor_obs = env_node.num_obs,
num_critic_obs = env_node.num_privileged_obs,
num_actions= env_node.num_actions,
obs_segments= env_node.obs_segments,
privileged_obs_segments= env_node.privileged_obs_segments,
**config_dict["policy"],
)
# load the model with the latest checkpoint
model_names = [i for i in os.listdir(args.logdir) if i.startswith("model_")]
model_names.sort(key= lambda x: int(x.split("_")[-1].split(".")[0]))
state_dict = torch.load(osp.join(args.logdir, model_names[-1]), map_location= "cpu")
model.load_state_dict(state_dict["model_state_dict"])
model.eval()
model.to(device)
env_node.get_logger().info("Model loaded from: {}".format(osp.join(args.logdir, model_names[-1])))
env_node.get_logger().info("Control Duration: {} sec".format(duration))
env_node.get_logger().info("Motor Stiffness (kp): {}".format(env_node.p_gains))
env_node.get_logger().info("Motor Damping (kd): {}".format(env_node.d_gains))
# zero_act_model to start the safe standing
zero_act_model = ZeroActModel()
zero_act_model = torch.jit.script(zero_act_model)
# magically modify the model to use the components other than the forward depth encoders
memory_a = model.memory_a
mlp = model.actor
@torch.jit.script
def policy(obs: torch.Tensor):
rnn_embedding = memory_a(obs)
action = mlp(rnn_embedding)
return action
if hasattr(model, "replace_state_prob"):
# the case where lin_vel is estimated by the state estimator
memory_s = model.memory_s
estimator = model.state_estimator
rnn_policy = policy
@torch.jit.script
def policy(obs: torch.Tensor):
estimator_input = obs[:, 3:48]
memory_s_embedding = memory_s(estimator_input)
estimated_state = estimator(memory_s_embedding)
obs[:, :3] = estimated_state
return rnn_policy(obs)
env_node.register_models(
zero_act_model,
model,
policy,
)
env_node.start_ros_handlers()
if args.loop_mode == "while":
rclpy.spin_once(env_node, timeout_sec= 0.)
env_node.get_logger().info("Model and Policy are ready")
while rclpy.ok():
main_loop_time = time.monotonic()
env_node.main_loop()
rclpy.spin_once(env_node, timeout_sec= 0.)
# env_node.get_logger().info("loop time: {:f}".format((time.monotonic() - main_loop_time)))
time.sleep(max(0, duration - (time.monotonic() - main_loop_time)))
elif args.loop_mode == "timer":
env_node.start_main_loop_timer(duration)
rclpy.spin(env_node)
rclpy.shutdown()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--logdir", type= str, default= None, help= "The directory which contains the config.json and model_*.pt files")
parser.add_argument("--nodryrun", action= "store_true", default= False, help= "Disable dryrun mode")
parser.add_argument("--loop_mode", type= str, default= "timer",
choices= ["while", "timer"],
help= "Select which mode to run the main policy control iteration",
)
args = parser.parse_args()
main(args)