59 lines
2.3 KiB
Python
59 lines
2.3 KiB
Python
import unittest
|
|
import torch
|
|
|
|
from rsl_rl.modules import Transformer # Assuming the Transformer class is in a module named my_module
|
|
|
|
|
|
class TestTransformer(unittest.TestCase):
|
|
def setUp(self):
|
|
self.input_size = 9
|
|
self.output_size = 12
|
|
self.hidden_size = 64
|
|
self.block_count = 2
|
|
self.context_length = 32
|
|
self.head_count = 4
|
|
self.batch_size = 10
|
|
self.sequence_length = 16
|
|
|
|
self.transformer = Transformer(
|
|
self.input_size, self.output_size, self.hidden_size, self.block_count, self.context_length, self.head_count
|
|
)
|
|
|
|
def test_num_layers(self):
|
|
self.assertEqual(self.transformer.num_layers, self.context_length // 2)
|
|
|
|
def test_reset_hidden_state(self):
|
|
hidden_state = self.transformer.reset_hidden_state(self.batch_size)
|
|
self.assertIsInstance(hidden_state, tuple)
|
|
self.assertEqual(len(hidden_state), 2)
|
|
self.assertTrue(
|
|
torch.equal(hidden_state[0], torch.zeros((self.transformer.num_layers, self.batch_size, self.hidden_size)))
|
|
)
|
|
self.assertTrue(
|
|
torch.equal(hidden_state[1], torch.zeros((self.transformer.num_layers, self.batch_size, self.hidden_size)))
|
|
)
|
|
|
|
def test_step(self):
|
|
x = torch.rand(self.sequence_length, self.batch_size, self.input_size)
|
|
context = torch.rand(self.context_length, self.batch_size, self.hidden_size)
|
|
|
|
out, new_context = self.transformer.step(x, context)
|
|
|
|
self.assertEqual(out.shape, (self.sequence_length, self.batch_size, self.output_size))
|
|
self.assertEqual(new_context.shape, (self.context_length, self.batch_size, self.hidden_size))
|
|
|
|
def test_forward(self):
|
|
x = torch.rand(self.sequence_length, self.batch_size, self.input_size)
|
|
hidden_state = self.transformer.reset_hidden_state(self.batch_size)
|
|
|
|
out, new_hidden_state = self.transformer.forward(x, hidden_state)
|
|
|
|
self.assertEqual(out.shape, (self.sequence_length, self.batch_size, self.output_size))
|
|
self.assertEqual(len(new_hidden_state), 2)
|
|
self.assertEqual(new_hidden_state[0].shape, (self.transformer.num_layers, self.batch_size, self.hidden_size))
|
|
self.assertEqual(new_hidden_state[1].shape, (self.transformer.num_layers, self.batch_size, self.hidden_size))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|