rsl_rl/rsl_rl/algorithms/ppo.py

188 lines
8.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Copyright (c) 2021 ETH Zurich, Nikita Rudin
import torch
import torch.nn as nn
import torch.optim as optim
from rsl_rl.modules import ActorCritic
from rsl_rl.storage import RolloutStorage
class PPO:
actor_critic: ActorCritic
def __init__(self,
actor_critic,
num_learning_epochs=1,
num_mini_batches=1,
clip_param=0.2,
gamma=0.998,
lam=0.95,
value_loss_coef=1.0,
entropy_coef=0.0,
learning_rate=1e-3,
max_grad_norm=1.0,
use_clipped_value_loss=True,
schedule="fixed",
desired_kl=0.01,
device='cpu',
):
self.device = device
self.desired_kl = desired_kl
self.schedule = schedule
self.learning_rate = learning_rate
# PPO components
self.actor_critic = actor_critic
self.actor_critic.to(self.device)
self.storage = None # initialized later
self.optimizer = optim.Adam(self.actor_critic.parameters(), lr=learning_rate)
self.transition = RolloutStorage.Transition()
# PPO parameters
self.clip_param = clip_param
self.num_learning_epochs = num_learning_epochs
self.num_mini_batches = num_mini_batches
self.value_loss_coef = value_loss_coef
self.entropy_coef = entropy_coef
self.gamma = gamma
self.lam = lam
self.max_grad_norm = max_grad_norm
self.use_clipped_value_loss = use_clipped_value_loss
def init_storage(self, num_envs, num_transitions_per_env, actor_obs_shape, critic_obs_shape, action_shape):
self.storage = RolloutStorage(num_envs, num_transitions_per_env, actor_obs_shape, critic_obs_shape, action_shape, self.device)
def test_mode(self):
self.actor_critic.test()
def train_mode(self):
self.actor_critic.train()
def act(self, obs, critic_obs):
if self.actor_critic.is_recurrent:
self.transition.hidden_states = self.actor_critic.get_hidden_states()
# Compute the actions and values
self.transition.actions = self.actor_critic.act(obs).detach()
self.transition.values = self.actor_critic.evaluate(critic_obs).detach()
self.transition.actions_log_prob = self.actor_critic.get_actions_log_prob(self.transition.actions).detach()
self.transition.action_mean = self.actor_critic.action_mean.detach()
self.transition.action_sigma = self.actor_critic.action_std.detach()
# need to record obs and critic_obs before env.step()
self.transition.observations = obs
self.transition.critic_observations = critic_obs
return self.transition.actions
def process_env_step(self, rewards, dones, infos):
self.transition.rewards = rewards.clone()
self.transition.dones = dones
# Bootstrapping on time outs
if 'time_outs' in infos:
self.transition.rewards += self.gamma * torch.squeeze(self.transition.values * infos['time_outs'].unsqueeze(1).to(self.device), 1)
# Record the transition
self.storage.add_transitions(self.transition)
self.transition.clear()
self.actor_critic.reset(dones)
def compute_returns(self, last_critic_obs):
last_values= self.actor_critic.evaluate(last_critic_obs).detach()
self.storage.compute_returns(last_values, self.gamma, self.lam)
def update(self):
mean_value_loss = 0
mean_surrogate_loss = 0
if self.actor_critic.is_recurrent:
generator = self.storage.reccurent_mini_batch_generator(self.num_mini_batches, self.num_learning_epochs)
else:
generator = self.storage.mini_batch_generator(self.num_mini_batches, self.num_learning_epochs)
for obs_batch, critic_obs_batch, actions_batch, target_values_batch, advantages_batch, returns_batch, old_actions_log_prob_batch, \
old_mu_batch, old_sigma_batch, hid_states_batch, masks_batch in generator:
self.actor_critic.act(obs_batch, masks=masks_batch, hidden_states=hid_states_batch[0])
actions_log_prob_batch = self.actor_critic.get_actions_log_prob(actions_batch)
value_batch = self.actor_critic.evaluate(critic_obs_batch, masks=masks_batch, hidden_states=hid_states_batch[1])
mu_batch = self.actor_critic.action_mean
sigma_batch = self.actor_critic.action_std
entropy_batch = self.actor_critic.entropy
# KL
if self.desired_kl != None and self.schedule == 'adaptive':
with torch.inference_mode():
kl = torch.sum(
torch.log(sigma_batch / old_sigma_batch + 1.e-5) + (torch.square(old_sigma_batch) + torch.square(old_mu_batch - mu_batch)) / (2.0 * torch.square(sigma_batch)) - 0.5, axis=-1)
kl_mean = torch.mean(kl)
if kl_mean > self.desired_kl * 2.0:
self.learning_rate = max(1e-5, self.learning_rate / 1.5)
elif kl_mean < self.desired_kl / 2.0 and kl_mean > 0.0:
self.learning_rate = min(1e-2, self.learning_rate * 1.5)
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.learning_rate
# Surrogate loss
ratio = torch.exp(actions_log_prob_batch - torch.squeeze(old_actions_log_prob_batch))
surrogate = -torch.squeeze(advantages_batch) * ratio
surrogate_clipped = -torch.squeeze(advantages_batch) * torch.clamp(ratio, 1.0 - self.clip_param,
1.0 + self.clip_param)
surrogate_loss = torch.max(surrogate, surrogate_clipped).mean()
# Value function loss
if self.use_clipped_value_loss:
value_clipped = target_values_batch + (value_batch - target_values_batch).clamp(-self.clip_param,
self.clip_param)
value_losses = (value_batch - returns_batch).pow(2)
value_losses_clipped = (value_clipped - returns_batch).pow(2)
value_loss = torch.max(value_losses, value_losses_clipped).mean()
else:
value_loss = (returns_batch - value_batch).pow(2).mean()
loss = surrogate_loss + self.value_loss_coef * value_loss - self.entropy_coef * entropy_batch.mean()
# Gradient step
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.actor_critic.parameters(), self.max_grad_norm)
self.optimizer.step()
mean_value_loss += value_loss.item()
mean_surrogate_loss += surrogate_loss.item()
num_updates = self.num_learning_epochs * self.num_mini_batches
mean_value_loss /= num_updates
mean_surrogate_loss /= num_updates
self.storage.clear()
return mean_value_loss, mean_surrogate_loss