lerobot/README.md

140 lines
2.7 KiB
Markdown
Raw Normal View History

# LeRobot
## Installation
2024-02-29 02:11:29 +08:00
Create a virtual environment with python 3.10, e.g. using `conda`:
```
2024-02-29 02:11:29 +08:00
conda create -y -n lerobot python=3.10
conda activate lerobot
```
2024-02-29 02:11:29 +08:00
[Install `poetry`](https://python-poetry.org/docs/#installation) (if you don't have it already)
2024-02-28 17:57:08 +08:00
```
2024-02-29 19:26:35 +08:00
curl -sSL https://install.python-poetry.org | python -
2024-02-28 17:57:08 +08:00
```
2024-02-29 02:11:29 +08:00
Install dependencies
2024-02-28 17:57:08 +08:00
```
2024-02-29 02:11:29 +08:00
poetry install
2024-02-28 17:57:08 +08:00
```
2024-02-29 02:11:29 +08:00
If you encounter a disk space error, try to change your tmp dir to a location where you have enough disk space, e.g.
2024-02-28 17:57:08 +08:00
```
2024-02-29 02:11:29 +08:00
mkdir ~/tmp
export TMPDIR='~/tmp'
2024-02-28 17:57:08 +08:00
```
2024-02-29 02:11:29 +08:00
Install `diffusion_policy` #HACK
2024-01-31 07:30:14 +08:00
```
2024-02-29 19:26:35 +08:00
# from this directory
2024-02-29 02:11:29 +08:00
git clone https://github.com/real-stanford/diffusion_policy
cp -r diffusion_policy/diffusion_policy $(poetry env info -p)/lib/python3.10/site-packages/
2024-01-31 07:30:14 +08:00
```
2024-02-22 20:14:12 +08:00
## Usage
### Train
```
python lerobot/scripts/train.py \
2024-02-27 19:44:26 +08:00
hydra.job.name=pusht \
env=pusht
2024-02-22 20:14:12 +08:00
```
### Visualize offline buffer
```
python lerobot/scripts/visualize_dataset.py \
2024-02-27 19:44:26 +08:00
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
2024-02-22 20:14:12 +08:00
```
### Visualize online buffer / Eval
```
python lerobot/scripts/eval.py \
2024-02-27 19:44:26 +08:00
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
2024-02-22 20:14:12 +08:00
```
## TODO
2024-02-16 23:14:59 +08:00
- [x] priority update doesnt match FOWM or original paper
- [x] self.step=100000 should be updated at every step to adjust to horizon of planner
- [ ] prefetch replay buffer to speedup training
- [ ] parallelize env to speedup eval
- [ ] clean checkpointing / loading
- [ ] clean logging
- [ ] clean config
- [ ] clean hyperparameter tuning
- [ ] add pusht
- [ ] add aloha
- [ ] add act
- [ ] add diffusion
- [ ] add aloha 2
## Profile
**Example**
```python
from torch.profiler import profile, record_function, ProfilerActivity
def trace_handler(prof):
prof.export_chrome_trace(f"tmp/trace_schedule_{prof.step_num}.json")
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(
wait=2,
warmup=2,
active=3,
),
on_trace_ready=trace_handler
) as prof:
with record_function("eval_policy"):
for i in range(num_episodes):
prof.step()
```
```bash
python lerobot/scripts/eval.py \
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
eval_episodes=7
```
2024-01-31 07:30:14 +08:00
## Contribute
2024-02-25 18:52:31 +08:00
**Style**
2024-01-31 07:30:14 +08:00
```
2024-03-01 07:31:32 +08:00
# install if needed
2024-02-29 19:26:35 +08:00
pre-commit install
2024-03-01 07:31:32 +08:00
# apply style and linter checks before git commit
pre-commit run -a
2024-01-31 07:30:14 +08:00
```
2024-02-25 18:52:31 +08:00
**Tests**
2024-03-08 23:48:33 +08:00
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
On Mac:
```
brew install git-lfs
git lfs install
```
On Ubuntu:
```
sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/data](tests/data)
```
git lfs pull
```
2024-02-25 18:52:31 +08:00
```
2024-03-08 23:48:33 +08:00
DATA_DIR="tests/data" pytest -sx tests
2024-02-29 19:26:35 +08:00
```