lerobot/examples/3_train_policy.py

67 lines
1.9 KiB
Python
Raw Normal View History

2024-03-27 00:13:40 +08:00
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
"""
import os
from pathlib import Path
import torch
from omegaconf import OmegaConf
2024-04-10 21:45:45 +08:00
from lerobot.common.datasets.factory import make_dataset
2024-03-27 00:13:40 +08:00
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
from lerobot.common.utils import init_hydra_config
output_directory = Path("outputs/train/example_pusht_diffusion")
os.makedirs(output_directory, exist_ok=True)
overrides = [
"env=pusht",
"policy=diffusion",
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
"offline_steps=5000",
"log_freq=250",
"device=cuda",
]
cfg = init_hydra_config("lerobot/configs/default.yaml", overrides)
policy = DiffusionPolicy(
cfg=cfg.policy,
cfg_device=cfg.device,
cfg_noise_scheduler=cfg.noise_scheduler,
cfg_optimizer=cfg.optimizer,
cfg_ema=cfg.ema,
**cfg.policy,
)
policy.train()
2024-04-10 21:45:45 +08:00
dataset = make_dataset(cfg)
# create dataloader for offline training
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=cfg.policy.batch_size,
shuffle=True,
pin_memory=cfg.device != "cpu",
drop_last=True,
)
for step, batch in enumerate(dataloader):
info = policy(batch, step)
if step % cfg.log_freq == 0:
num_samples = (step + 1) * cfg.policy.batch_size
loss = info["loss"]
update_s = info["update_s"]
print(f"step:{step} samples:{num_samples} loss:{loss:.3f} update_time:{update_s:.3f}(seconds)")
2024-03-27 00:13:40 +08:00
# Save the policy, configuration, and normalization stats for later use.
policy.save(output_directory / "model.pt")
OmegaConf.save(cfg, output_directory / "config.yaml")
2024-04-10 21:45:45 +08:00
torch.save(dataset.transform.transforms[-1].stats, output_directory / "stats.pth")