lerobot/test.py

94 lines
2.8 KiB
Python
Raw Normal View History

2024-09-18 06:35:20 +08:00
import math
import threading
import time
from threading import Thread
class TemporalQueue:
def __init__(self):
self.items = []
self.timestamps = []
def add(self, item, timestamp):
self.items.append(item)
self.timestamps.append(timestamp)
def get(self, timestamp=None):
if timestamp is None:
return self.items[-1], self.timestamps[-1]
# TODO(rcadene): implement nearest neighbor instead of hacky floor
for idx, t in list(enumerate(self.timestamps))[::-1]:
if math.floor(t) == math.floor(timestamp):
return self.items[idx], t
raise ValueError()
def __len__(self):
return len(self.items)
class Policy:
def __init__(self):
self.obs_queue = TemporalQueue()
self.action_queue = TemporalQueue()
self.thread = None
self.n_action = 2
FPS = 10 # noqa: N806
self.delta_timestamps = [i / FPS for i in range(self.n_action)]
2024-09-18 06:35:20 +08:00
def inference(self, observation):
# TODO
time.sleep(0.5)
return [observation] * self.n_action
2024-09-18 06:35:20 +08:00
def inference_loop(self):
prev_timestamp = None
2024-09-18 06:35:20 +08:00
while not self.stop_event.is_set():
last_observation, last_timestamp = self.obs_queue.get()
2024-09-18 06:35:20 +08:00
if prev_timestamp is not None and prev_timestamp == last_timestamp:
2024-09-18 06:36:08 +08:00
# in case inference ran faster than recording/adding a new observation in the queue
time.sleep(0.1)
continue
pred_action_sequence = self.inference(last_observation)
for action, delta_ts in zip(pred_action_sequence, self.delta_timestamps, strict=False):
self.action_queue.add(action, last_timestamp + delta_ts)
prev_timestamp = last_timestamp
2024-09-18 06:35:20 +08:00
def select_action(
self,
new_observation: int,
) -> list[int]:
present_time = time.time()
self.obs_queue.add(new_observation, present_time)
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.inference_loop, args=())
self.thread.daemon = True
self.thread.start()
next_action = None
while next_action is None:
try:
next_action = self.action_queue.get(present_time)
except ValueError:
time.sleep(0.1) # no action available at this present time, we wait a bit
return next_action
if __name__ == "__main__":
time.sleep(1)
policy = Policy()
for new_observation in range(10):
next_action = policy.select_action(new_observation)
print(f"{new_observation=}, {next_action=}")
time.sleep(0.5) # frequency at which we receive a new observation (5 Hz = 0.2 s)