lerobot/tests/test_regression.py

80 lines
2.3 KiB
Python
Raw Normal View History

2024-04-30 17:55:57 +08:00
import pytest
import torch
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.policies.factory import make_policy
2024-05-01 01:23:06 +08:00
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
2024-04-30 17:55:57 +08:00
from lerobot.scripts.train import make_optimizer
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
@pytest.mark.parametrize(
"env_name,policy_name,extra_overrides",
[
# ("xarm", "tdmpc", ["policy.mpc=true"]),
# ("pusht", "tdmpc", ["policy.mpc=false"]),
("pusht", "diffusion", []),
2024-05-01 01:23:06 +08:00
("aloha", "act"),
2024-04-30 17:55:57 +08:00
],
)
@require_env
2024-05-01 01:23:06 +08:00
def test_backward_compatibility(env_name, policy_name):
2024-04-30 17:55:57 +08:00
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[
f"env={env_name}",
f"policy={policy_name}",
f"device={DEVICE}",
2024-05-01 01:23:06 +08:00
],
2024-04-30 17:55:57 +08:00
)
2024-05-01 01:23:06 +08:00
set_global_seed(1337)
2024-04-30 17:55:57 +08:00
dataset = make_dataset(cfg)
policy = make_policy(cfg, dataset_stats=dataset.stats)
policy.train()
policy.to(DEVICE)
2024-05-01 01:23:06 +08:00
optimizer, _ = make_optimizer(cfg, policy)
2024-04-30 17:55:57 +08:00
dataloader = torch.utils.data.DataLoader(
dataset,
2024-05-01 01:23:06 +08:00
num_workers=0,
batch_size=cfg.training.batch_size,
shuffle=False,
2024-04-30 17:55:57 +08:00
)
2024-05-01 01:23:06 +08:00
batch = next(iter(dataloader))
output_dict = policy.forward(batch)
loss = output_dict["loss"]
# TODO Check output dict values
loss.backward()
grad_stats = {}
for key, param in policy.named_parameters():
if param.requires_grad:
grad_stats[f"{key}_mean"] = param.grad.mean()
grad_stats[f"{key}_std"] = param.grad.std()
optimizer.step()
param_stats = {}
for key, param in policy.named_parameters():
param_stats[f"{key}_mean"] = param.mean()
param_stats[f"{key}_std"] = param.std()
optimizer.zero_grad()
policy.reset()
dataset.delta_timestamps = None
batch = next(iter(dataloader))
# TODO(aliberts): refacor `select_action` methods so that it expects `obs` instead of `batch`
if policy_name == "diffusion":
batch = {k: batch[k] for k in ["observation.image", "observation.state"]}
actions = {i: policy.select_action(batch) for i in range(cfg.policy.n_action_steps)}
print(len(actions))
2024-04-30 17:55:57 +08:00
if __name__ == "__main__":
2024-05-01 01:23:06 +08:00
# test_backward_compatibility("aloha", "act")
test_backward_compatibility("pusht", "diffusion")