lerobot/lerobot/common/robots/lekiwi/daemon_lekiwi.py

466 lines
18 KiB
Python
Raw Normal View History

2025-03-13 19:54:27 +08:00
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2025-03-14 21:38:06 +08:00
import base64
2025-03-13 19:54:27 +08:00
import json
import logging
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
import cv2
2025-03-14 21:38:06 +08:00
import numpy as np
2025-03-13 19:54:27 +08:00
import torch
2025-03-14 21:38:06 +08:00
import zmq
2025-03-13 19:54:27 +08:00
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
2025-03-14 21:30:55 +08:00
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError, InvalidActionError
2025-03-14 21:38:06 +08:00
2025-03-14 21:30:55 +08:00
from ..robot import Robot, RobotMode
2025-03-13 19:54:27 +08:00
from .configuration_daemon_lekiwi import DaemonLeKiwiRobotConfig
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# TODO(Steven): This doesn't need to inherit from Robot
# But we do it for now to offer a familiar API
# TODO(Steven): This doesn't need to take care of the
# mapping from teleop to motor commands, but given that
# we already have a middle-man (this class) we add it here
2025-03-14 21:38:06 +08:00
# Other options include:
2025-03-14 21:30:55 +08:00
# 1. Adding it to the Telop implementation for lekiwi
# (meaning each robot will need a teleop imple) or
2025-03-14 21:38:06 +08:00
# 2. Adding it into the robot implementation
# (meaning the policy might be needed to be train
2025-03-14 21:30:55 +08:00
# over the teleop action space)
2025-03-13 19:54:27 +08:00
class DaemonLeKiwiRobot(Robot):
config_class = DaemonLeKiwiRobotConfig
name = "daemonlekiwi"
def __init__(self, config: DaemonLeKiwiRobotConfig):
super().__init__(config)
self.config = config
self.id = config.id
self.robot_type = config.type
self.remote_ip = config.remote_ip
self.port_zmq_cmd = config.port_zmq_cmd
self.port_zmq_observations = config.port_zmq_observations
self.teleop_keys = config.teleop_keys
self.zmq_context = None
self.zmq_cmd_socket = None
self.zmq_observation_socket = None
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
# TODO(Steven): Get this from the data fetched?
2025-03-14 21:30:55 +08:00
# TODO(Steven): Motor names are unknown for the Daemon
# Or assume its size/metadata?
2025-03-13 19:54:27 +08:00
# return {
# "dtype": "float32",
# "shape": (len(self.actuators),),
# "names": {"motors": list(self.actuators.motors)},
# }
pass
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
2025-03-14 21:30:55 +08:00
# TODO(Steven): Get this from the data fetched?
# TODO(Steven): Motor names are unknown for the Daemon
# Or assume its size/metadata?
2025-03-13 19:54:27 +08:00
# cam_ft = {}
# for cam_key, cam in self.cameras.items():
# cam_ft[cam_key] = {
# "shape": (cam.height, cam.width, cam.channels),
# "names": ["height", "width", "channels"],
# "info": None,
# }
# return cam_ft
pass
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"LeKiwi Daemon is already connected. Do not run `robot.connect()` twice."
)
self.zmq_context = zmq.Context()
self.zmq_cmd_socket = self.zmq_context.socket(zmq.PUSH)
zmq_cmd_locator = f"tcp://{self.remote_ip}:{self.port_zmq_cmd}"
self.zmq_cmd_socket.connect(zmq_cmd_locator)
self.zmq_cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.zmq_observation_socket = self.zmq_context.socket(zmq.PULL)
zmq_observations_locator = f"tcp://{self.remote_ip}:{self.port_zmq_observations}"
self.zmq_observation_socket.connect(zmq_observations_locator)
2025-03-14 21:38:06 +08:00
self.zmq_observation_socket.setsockopt(zmq.CONFLATE, 1)
2025-03-13 19:54:27 +08:00
self.is_connected = True
def calibrate(self) -> None:
2025-03-14 21:38:06 +08:00
# TODO(Steven): Nothing to calibrate.
2025-03-14 21:30:55 +08:00
# Consider triggering calibrate() on the remote mobile robot?
2025-03-14 21:38:06 +08:00
# Although this would require a more complex comms schema
2025-03-14 21:30:55 +08:00
logging.warning("DaemonLeKiwiRobot has nothing to calibrate.")
return
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# Consider moving these static functions out of the class
# Copied from robot_lekiwi MobileManipulator class
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# Copied from robot_lekiwi MobileManipulator class
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# Copied from robot_lekiwi MobileManipulator class
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [DaemonLeKiwiRobot.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# Copied from robot_lekiwi MobileManipulator class
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([DaemonLeKiwiRobot.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
def get_data(self):
2025-03-14 21:30:55 +08:00
# Copied from robot_lekiwi.py
2025-03-13 19:54:27 +08:00
"""Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values."""
frames = {}
present_speed = {}
2025-03-14 21:30:55 +08:00
# TODO(Steven): Size is being assumed, is this safe?
2025-03-13 19:54:27 +08:00
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.zmq_observation_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.zmq_observation_socket not in socks or socks[self.zmq_observation_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
2025-03-14 21:30:55 +08:00
# TODO(Steven): This might return empty variables at init
2025-03-13 19:54:27 +08:00
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
2025-03-14 21:30:55 +08:00
# TODO(Steven): There's probably a way to do this without while True
# TODO(Steven): Even consider changing to PUB/SUB
2025-03-13 19:54:27 +08:00
while True:
try:
obs_string = self.zmq_observation_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
2025-03-14 21:30:55 +08:00
state_observation = {k: v for k, v in observation.items() if k.startswith(OBS_STATE)}
image_observation = {k: v for k, v in observation.items() if k.startswith(OBS_IMAGES)}
2025-03-13 19:54:27 +08:00
# Convert images
2025-03-14 21:30:55 +08:00
for cam_name, image_b64 in image_observation.items():
2025-03-13 19:54:27 +08:00
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
2025-03-14 21:30:55 +08:00
if state_observation is not None and frames is not None:
2025-03-13 19:54:27 +08:00
self.last_frames = frames
2025-03-14 21:30:55 +08:00
remote_arm_state_tensor = torch.tensor(state_observation[:6], dtype=torch.float32)
2025-03-13 19:54:27 +08:00
self.last_remote_arm_state = remote_arm_state_tensor
2025-03-14 21:30:55 +08:00
present_speed = state_observation[6:]
self.last_present_speed = present_speed
2025-03-13 19:54:27 +08:00
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
# TODO(Steven): The returned space is different from the get_observation of LeKiwiRobot
# This returns body-frames velocities instead of wheel pos/speeds
def get_observation(self) -> dict[str, np.ndarray]:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"DaemonLeKiwiRobot is not connected. You need to run `robot.connect()`."
)
obs_dict = {}
frames, present_speed, remote_arm_state_tensor = self.get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
obs_dict = {OBS_STATE: combined_state_tensor}
# Loop over each configured camera
2025-03-14 21:30:55 +08:00
for cam_name, frame in frames.items():
2025-03-13 19:54:27 +08:00
if frame is None:
2025-03-14 21:30:55 +08:00
# TODO(Steven): Daemon doesn't know camera dimensions
logging.warning("Frame is None")
2025-03-14 21:38:06 +08:00
# frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
2025-03-14 21:30:55 +08:00
obs_dict[cam_name] = torch.from_numpy(frame)
2025-03-13 19:54:27 +08:00
return obs_dict
2025-03-14 06:59:39 +08:00
def from_keyboard_to_wheel_action(self, pressed_keys: np.ndarray):
# Speed control
if self.teleop_keys["speed_up"] in pressed_keys:
self.speed_index = min(self.speed_index + 1, 2)
if self.teleop_keys["speed_down"] in pressed_keys:
self.speed_index = max(self.speed_index - 1, 0)
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
2025-03-14 21:38:06 +08:00
2025-03-14 06:59:39 +08:00
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.teleop_keys["forward"] in pressed_keys:
x_cmd += xy_speed
if self.teleop_keys["backward"] in pressed_keys:
x_cmd -= xy_speed
if self.teleop_keys["left"] in pressed_keys:
y_cmd += xy_speed
if self.teleop_keys["right"] in pressed_keys:
y_cmd -= xy_speed
if self.teleop_keys["rotate_left"] in pressed_keys:
theta_cmd += theta_speed
if self.teleop_keys["rotate_right"] in pressed_keys:
theta_cmd -= theta_speed
return self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
2025-03-13 19:54:27 +08:00
2025-03-14 21:30:55 +08:00
# TODO(Steven): This assumes this call is always called from a keyboard teleop command
# TODO(Steven): Doing this mapping in here adds latecy between send_action and movement from the user perspective.
# t0: get teleop_cmd
# t1: send_action(teleop_cmd)
# t2: mapping teleop_cmd -> motor_cmd
# t3: execute motor_md
# This mapping for other robots/teleop devices might be slower. Doing this in the teleop will make this explicit
# t0': get teleop_cmd
# t1': mapping teleop_cmd -> motor_cmd
# t2': send_action(motor_cmd)
# t3': execute motor_cmd
# t3'-t2' << t3-t1
2025-03-13 19:54:27 +08:00
def send_action(self, action: np.ndarray) -> np.ndarray:
"""Command lekiwi to move to a target joint configuration.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
2025-03-14 21:38:06 +08:00
2025-03-14 06:59:39 +08:00
goal_pos: np.array = np.empty(9)
2025-03-14 21:30:55 +08:00
if self.robot_mode is RobotMode.AUTO:
# TODO(Steven): Not yet implemented. The policy outputs might need a different conversion
2025-03-14 06:59:39 +08:00
raise Exception
2025-03-14 21:38:06 +08:00
2025-03-14 21:30:55 +08:00
# TODO(Steven): This assumes teleop mode is always used with keyboard
if self.robot_mode is RobotMode.TELEOP:
2025-03-14 21:38:06 +08:00
if action.size < 6:
2025-03-14 21:30:55 +08:00
logging.error("Action should include at least the 6 states of the leader arm")
raise InvalidActionError
2025-03-14 21:38:06 +08:00
2025-03-14 21:30:55 +08:00
# TODO(Steven): Assumes size and order is respected
2025-03-14 21:38:06 +08:00
wheel_actions = [v for _, v in self.from_keyboard_to_wheel_action(action[6:])]
goal_pos[:6] = action[:6]
goal_pos[6:] = wheel_actions
self.zmq_cmd_socket.send_string(json.dumps(goal_pos)) # action is in motor space
2025-03-13 19:54:27 +08:00
return goal_pos
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
def print_logs(self):
# TODO(Steven): Refactor logger
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"LeKiwi is not connected. You need to run `robot.connect()` before disconnecting."
)
# TODO(Steven): Consider sending a stop to the remote mobile robot
self.zmq_observation_socket.close()
self.zmq_cmd_socket.close()
self.zmq_context.term()
self.is_connected = False
2025-03-14 21:38:06 +08:00
2025-03-13 19:54:27 +08:00
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()