lerobot/convert_dataset_16_to_20.py

540 lines
18 KiB
Python
Raw Normal View History

2024-10-04 02:00:44 +08:00
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
If your dataset contains a single task, you can provide it directly via the CLI with the '--task' option (see
examples below).
If your dataset is a multi-task dataset, TODO
In any case, keep in mind that there should only be one task per episode. Multi-task episodes are not
supported for now.
Usage examples
Single-task dataset:
```bash
python convert_dataset_16_to_20.py \
--repo-id lerobot/aloha_sim_insertion_human_image \
--task "Insert the peg into the socket." \
2024-10-08 21:31:37 +08:00
--robot-config lerobot/configs/robot/aloha.yaml \
--local-dir data
2024-10-04 02:00:44 +08:00
```
```bash
python convert_dataset_16_to_20.py \
--repo-id aliberts/koch_tutorial \
--task "Pick the Lego block and drop it in the box on the right." \
--robot-config lerobot/configs/robot/koch.yaml \
--local-dir data
```
Multi-task dataset:
TODO
"""
import argparse
2024-10-04 20:26:50 +08:00
import contextlib
2024-10-04 02:00:44 +08:00
import json
import math
import subprocess
from io import BytesIO
from pathlib import Path
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.parquet as pq
import torch
from huggingface_hub import HfApi
2024-10-04 20:26:50 +08:00
from huggingface_hub.errors import EntryNotFoundError
2024-10-04 02:00:44 +08:00
from PIL import Image
from safetensors.torch import load_file
2024-10-08 21:31:37 +08:00
from lerobot.common.datasets.utils import create_branch, flatten_dict, unflatten_dict
2024-10-04 02:00:44 +08:00
from lerobot.common.utils.utils import init_hydra_config
2024-10-04 20:26:50 +08:00
from lerobot.scripts.push_dataset_to_hub import push_dataset_card_to_hub
2024-10-04 02:00:44 +08:00
V1_6 = "v1.6"
V2_0 = "v2.0"
PARQUET_PATH = "data/train-{episode_index:05d}-of-{total_episodes:05d}.parquet"
2024-10-08 21:31:37 +08:00
VIDEO_PATH = "videos/{video_key}_episode_{episode_index:06d}.mp4"
2024-10-04 02:00:44 +08:00
def parse_robot_config(config_path: Path, config_overrides: list[str] | None = None) -> tuple[str, dict]:
robot_cfg = init_hydra_config(config_path, config_overrides)
if robot_cfg["robot_type"] in ["aloha", "koch"]:
state_names = [
f"{arm}_{motor}" if len(robot_cfg["follower_arms"]) > 1 else motor
for arm in robot_cfg["follower_arms"]
for motor in robot_cfg["follower_arms"][arm]["motors"]
]
action_names = [
# f"{arm}_{motor}" for arm in ["left", "right"] for motor in robot_cfg["leader_arms"][arm]["motors"]
f"{arm}_{motor}" if len(robot_cfg["leader_arms"]) > 1 else motor
for arm in robot_cfg["leader_arms"]
for motor in robot_cfg["leader_arms"][arm]["motors"]
]
# elif robot_cfg["robot_type"] == "stretch3": TODO
else:
raise NotImplementedError(
"Please provide robot_config={'robot_type': ..., 'names': ...} directly to convert_dataset()."
)
return {
"robot_type": robot_cfg["robot_type"],
"names": {
"observation.state": state_names,
"action": action_names,
},
}
def load_json(fpath: Path) -> dict:
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4)
def convert_stats_to_json(input_dir: Path, output_dir: Path) -> None:
safetensor_path = input_dir / "stats.safetensors"
stats = load_file(safetensor_path)
2024-10-08 21:31:37 +08:00
serialized_stats = {key: value.tolist() for key, value in stats.items()}
serialized_stats = unflatten_dict(serialized_stats)
2024-10-04 02:00:44 +08:00
json_path = output_dir / "stats.json"
json_path.parent.mkdir(exist_ok=True, parents=True)
with open(json_path, "w") as f:
2024-10-08 21:31:37 +08:00
json.dump(serialized_stats, f, indent=4)
2024-10-04 02:00:44 +08:00
# Sanity check
with open(json_path) as f:
stats_json = json.load(f)
2024-10-08 21:31:37 +08:00
stats_json = flatten_dict(stats_json)
2024-10-04 02:00:44 +08:00
stats_json = {key: torch.tensor(value) for key, value in stats_json.items()}
for key in stats:
torch.testing.assert_close(stats_json[key], stats[key])
def get_keys(table: pa.Table) -> dict[str, list]:
table_metadata = json.loads(table.schema.metadata[b"huggingface"].decode("utf-8"))
sequence_keys, image_keys, video_keys = [], [], []
for key, val in table_metadata["info"]["features"].items():
if val["_type"] == "Sequence":
sequence_keys.append(key)
elif val["_type"] == "Image":
image_keys.append(key)
elif val["_type"] == "VideoFrame":
video_keys.append(key)
return {
"sequence": sequence_keys,
"image": image_keys,
"video": video_keys,
}
def remove_hf_metadata_features(table: pa.Table, features: list[str]) -> pa.Table:
# HACK
schema = table.schema
# decode bytes dict
table_metadata = json.loads(schema.metadata[b"huggingface"].decode("utf-8"))
for key in features:
table_metadata["info"]["features"].pop(key)
# re-encode bytes dict
table_metadata = {b"huggingface": json.dumps(table_metadata).encode("utf-8")}
new_schema = schema.with_metadata(table_metadata)
return table.replace_schema_metadata(new_schema.metadata)
def add_hf_metadata_features(table: pa.Table, features: dict[str, dict]) -> pa.Table:
# HACK
schema = table.schema
# decode bytes dict
table_metadata = json.loads(schema.metadata[b"huggingface"].decode("utf-8"))
for key, val in features.items():
table_metadata["info"]["features"][key] = val
# re-encode bytes dict
table_metadata = {b"huggingface": json.dumps(table_metadata).encode("utf-8")}
new_schema = schema.with_metadata(table_metadata)
return table.replace_schema_metadata(new_schema.metadata)
def remove_videoframe_from_table(table: pa.Table, image_columns: list) -> pa.Table:
table = table.drop(image_columns)
table = remove_hf_metadata_features(table, image_columns)
return table
def add_tasks(table: pa.Table, tasks_by_episodes: dict) -> pa.Table:
tasks_index = pa.array([tasks_by_episodes.get(key.as_py(), None) for key in table["episode_index"]])
table = table.append_column("task_index", tasks_index)
hf_feature = {"task_index": {"dtype": "int64", "_type": "Value"}}
table = add_hf_metadata_features(table, hf_feature)
return table
def split_parquet_by_episodes(
table: pa.Table, keys: dict[str, list], total_episodes: int, episode_indices: list, output_dir: Path
) -> list:
(output_dir / "data").mkdir(exist_ok=True, parents=True)
if len(keys["video"]) > 0:
table = remove_videoframe_from_table(table, keys["video"])
episode_lengths = []
for episode_index in sorted(episode_indices):
# Write each episode_index to a new parquet file
filtered_table = table.filter(pc.equal(table["episode_index"], episode_index))
episode_lengths.insert(episode_index, len(filtered_table))
output_file = output_dir / PARQUET_PATH.format(
episode_index=episode_index, total_episodes=total_episodes
)
pq.write_table(filtered_table, output_file)
return episode_lengths
def _get_audio_info(video_path: Path | str) -> dict:
ffprobe_audio_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"a:0",
"-show_entries",
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
audio_stream_info = info["streams"][0] if info.get("streams") else None
if audio_stream_info is None:
return {"has_audio": False}
# Return the information, defaulting to None if no audio stream is present
return {
"has_audio": True,
"audio.channels": audio_stream_info.get("channels", None),
"audio.codec": audio_stream_info.get("codec_name", None),
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
"audio.sample_rate": int(audio_stream_info["sample_rate"])
if audio_stream_info.get("sample_rate")
else None,
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
}
def _get_video_info(video_path: Path | str) -> dict:
ffprobe_video_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
info = json.loads(result.stdout)
video_stream_info = info["streams"][0]
# Calculate fps from r_frame_rate
r_frame_rate = video_stream_info["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
fps = num / denom
2024-10-06 17:16:49 +08:00
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
2024-10-04 02:00:44 +08:00
video_info = {
"video.fps": fps,
"video.width": video_stream_info["width"],
"video.height": video_stream_info["height"],
2024-10-06 17:16:49 +08:00
"video.channels": pixel_channels,
2024-10-04 02:00:44 +08:00
"video.codec": video_stream_info["codec_name"],
"video.pix_fmt": video_stream_info["pix_fmt"],
2024-10-08 21:31:37 +08:00
"video.is_depth_map": False,
2024-10-04 02:00:44 +08:00
**_get_audio_info(video_path),
}
return video_info
def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str]) -> dict:
hub_api = HfApi()
2024-10-08 21:31:37 +08:00
videos_info_dict = {"videos_path": VIDEO_PATH}
2024-10-04 02:00:44 +08:00
for vid_key in video_keys:
2024-10-08 21:31:37 +08:00
video_path = VIDEO_PATH.format(video_key=vid_key, episode_index=0)
2024-10-04 02:00:44 +08:00
video_path = hub_api.hf_hub_download(
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, filename=video_path
)
videos_info_dict[vid_key] = _get_video_info(video_path)
return videos_info_dict
2024-10-06 17:16:49 +08:00
def get_video_pixel_channels(pix_fmt: str) -> int:
if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt:
return 1
elif "rgba" in pix_fmt or "yuva" in pix_fmt:
return 4
elif "rgb" in pix_fmt or "yuv" in pix_fmt:
return 3
else:
raise ValueError("Unknown format")
def get_image_pixel_channels(image: Image):
if image.mode == "L":
return 1 # Grayscale
elif image.mode == "LA":
return 2 # Grayscale + Alpha
elif image.mode == "RGB":
return 3 # RGB
elif image.mode == "RGBA":
return 4 # RGBA
else:
raise ValueError("Unknown format")
2024-10-04 02:00:44 +08:00
def get_video_shapes(videos_info: dict, video_keys: list) -> dict:
video_shapes = {}
for img_key in video_keys:
2024-10-06 17:16:49 +08:00
channels = get_video_pixel_channels(videos_info[img_key]["video.pix_fmt"])
2024-10-04 02:00:44 +08:00
video_shapes[img_key] = {
"width": videos_info[img_key]["video.width"],
"height": videos_info[img_key]["video.height"],
2024-10-06 17:16:49 +08:00
"channels": channels,
2024-10-04 02:00:44 +08:00
}
return video_shapes
def get_image_shapes(table: pa.Table, image_keys: list) -> dict:
image_shapes = {}
for img_key in image_keys:
image_bytes = table[img_key][0].as_py() # Assuming first row
image = Image.open(BytesIO(image_bytes["bytes"]))
2024-10-06 17:16:49 +08:00
channels = get_image_pixel_channels(image)
2024-10-04 02:00:44 +08:00
image_shapes[img_key] = {
"width": image.width,
"height": image.height,
2024-10-06 17:16:49 +08:00
"channels": channels,
2024-10-04 02:00:44 +08:00
}
return image_shapes
def get_generic_motor_names(sequence_shapes: dict) -> dict:
return {key: [f"motor_{i}" for i in range(length)] for key, length in sequence_shapes.items()}
def convert_dataset(
repo_id: str,
local_dir: Path,
tasks: dict,
tasks_by_episodes: dict | None = None,
robot_config: dict | None = None,
):
2024-10-08 21:31:37 +08:00
v1_6_dir = local_dir / V1_6 / repo_id
v2_0_dir = local_dir / V2_0 / repo_id
2024-10-04 02:00:44 +08:00
v1_6_dir.mkdir(parents=True, exist_ok=True)
v2_0_dir.mkdir(parents=True, exist_ok=True)
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", revision=V1_6, local_dir=v1_6_dir, ignore_patterns="videos/"
)
metadata_v1_6 = load_json(v1_6_dir / "meta_data" / "info.json")
table = pq.read_table(v1_6_dir / "data")
keys = get_keys(table)
# Episodes
episode_indices = sorted(table["episode_index"].unique().to_pylist())
total_episodes = len(episode_indices)
assert episode_indices == list(range(total_episodes))
# Tasks
if tasks_by_episodes is None: # Single task dataset
tasks_by_episodes = {ep_idx: 0 for ep_idx in episode_indices}
assert set(tasks) == set(tasks_by_episodes.values())
table = add_tasks(table, tasks_by_episodes)
write_json(tasks, v2_0_dir / "meta" / "tasks.json")
# Split data into 1 parquet file by episode
episode_lengths = split_parquet_by_episodes(table, keys, total_episodes, episode_indices, v2_0_dir)
# Shapes
sequence_shapes = {key: len(table[key][0]) for key in keys["sequence"]}
image_shapes = get_image_shapes(table, keys["image"]) if len(keys["image"]) > 0 else {}
if len(keys["video"]) > 0:
assert metadata_v1_6.get("video", False)
videos_info = get_videos_info(repo_id, v1_6_dir, video_keys=keys["video"])
video_shapes = get_video_shapes(videos_info, keys["video"])
for img_key in keys["video"]:
assert videos_info[img_key]["video.pix_fmt"] == metadata_v1_6["encoding"]["pix_fmt"]
assert math.isclose(videos_info[img_key]["video.fps"], metadata_v1_6["fps"], rel_tol=1e-3)
else:
assert len(keys["video"]) == 0
videos_info = None
video_shapes = {}
# Names
if robot_config is not None:
robot_type = robot_config["robot_type"]
names = robot_config["names"]
2024-10-04 20:26:50 +08:00
repo_tags = [robot_type]
2024-10-04 02:00:44 +08:00
else:
robot_type = "unknown"
names = get_generic_motor_names(sequence_shapes)
2024-10-04 20:26:50 +08:00
repo_tags = None
2024-10-04 02:00:44 +08:00
assert set(names) == set(keys["sequence"])
for key in sequence_shapes:
assert len(names[key]) == sequence_shapes[key]
# Episodes info
episodes = [
{"index": ep_idx, "task": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
for ep_idx in episode_indices
]
# Assemble metadata v2.0
metadata_v2_0 = {
"codebase_version": V2_0,
"data_path": PARQUET_PATH,
"robot_type": robot_type,
"total_episodes": total_episodes,
"total_tasks": len(tasks),
"fps": metadata_v1_6["fps"],
2024-10-04 20:26:50 +08:00
"splits": {"train": f"0:{total_episodes}"},
2024-10-04 02:00:44 +08:00
"keys": keys["sequence"],
2024-10-08 21:31:37 +08:00
"video_keys": keys["video"],
"image_keys": keys["image"],
"shapes": {**sequence_shapes, **video_shapes, **image_shapes},
2024-10-04 02:00:44 +08:00
"names": names,
"videos": videos_info,
"episodes": episodes,
}
write_json(metadata_v2_0, v2_0_dir / "meta" / "info.json")
convert_stats_to_json(v1_6_dir / "meta_data", v2_0_dir / "meta")
2024-10-04 20:26:50 +08:00
with contextlib.suppress(EntryNotFoundError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision="main")
with contextlib.suppress(EntryNotFoundError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision="main")
2024-10-04 02:00:44 +08:00
2024-10-04 20:26:50 +08:00
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="data",
folder_path=v2_0_dir / "data",
repo_type="dataset",
revision="main",
)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="meta",
folder_path=v2_0_dir / "meta",
repo_type="dataset",
revision="main",
)
2024-10-04 20:36:11 +08:00
2024-10-04 20:26:50 +08:00
metadata_v2_0.pop("episodes")
2024-10-04 20:36:11 +08:00
card_text = f"[meta/info.json](meta/info.json)\n```json\n{json.dumps(metadata_v2_0, indent=4)}\n```"
2024-10-04 20:26:50 +08:00
push_dataset_card_to_hub(repo_id=repo_id, revision="main", tags=repo_tags, text=card_text)
create_branch(repo_id=repo_id, branch=V2_0, repo_type="dataset")
2024-10-04 02:00:44 +08:00
# TODO:
# - [X] Add shapes
# - [X] Add keys
# - [X] Add paths
# - [X] convert stats.json
# - [X] Add task.json
# - [X] Add names
# - [X] Add robot_type
2024-10-04 20:26:50 +08:00
# - [X] Add splits
# - [X] Push properly to branch v2.0 and delete v1.6 stuff from that branch
2024-10-04 02:00:44 +08:00
# - [/] Add sanity checks (encoding, shapes)
# - [ ] Handle multitask datasets
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
parser.add_argument(
"--task",
type=str,
required=True,
help="A short but accurate description of the task performed in the dataset.",
)
parser.add_argument(
"--robot-config",
type=Path,
default=None,
help="Path to the robot's config yaml the dataset during conversion.",
)
parser.add_argument(
"--robot-overrides",
type=str,
nargs="*",
help="Any key=value arguments to override the robot config values (use dots for.nested=overrides)",
)
parser.add_argument(
"--local-dir",
type=Path,
default=None,
help="Local directory to store the dataset during conversion. Defaults to /tmp/{repo_id}",
)
args = parser.parse_args()
if args.local_dir is None:
args.local_dir = Path(f"/tmp/{args.repo_id}")
tasks = {0: args.task}
del args.task
if args.robot_config is not None:
robot_config = parse_robot_config(args.robot_config, args.robot_overrides)
else:
robot_config = None
del args.robot_config, args.robot_overrides
convert_dataset(**vars(args), tasks=tasks, robot_config=robot_config)
if __name__ == "__main__":
from time import sleep
sleep(1)
main()