lerobot/lerobot/scripts/eval.py

175 lines
6.1 KiB
Python
Raw Normal View History

import logging
2024-02-25 02:19:18 +08:00
import threading
2024-03-01 07:13:06 +08:00
import time
from pathlib import Path
2024-03-20 17:45:45 +08:00
import einops
import hydra
import imageio
import numpy as np
import torch
2024-02-27 19:44:26 +08:00
import tqdm
from tensordict.nn import TensorDictModule
2024-03-20 00:02:09 +08:00
from torchrl.envs import EnvBase
from torchrl.envs.batched_envs import BatchedEnvBase
2024-03-02 23:58:21 +08:00
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import init_logging, set_seed
2024-02-25 02:19:18 +08:00
def write_video(video_path, stacked_frames, fps):
imageio.mimsave(video_path, stacked_frames, fps=fps)
2024-02-25 02:19:18 +08:00
def eval_policy(
env: BatchedEnvBase,
policy: AbstractPolicy,
2024-01-31 21:54:32 +08:00
num_episodes: int = 10,
max_steps: int = 30,
save_video: bool = False,
video_dir: Path = None,
fps: int = 15,
return_first_video: bool = False,
):
2024-03-18 17:45:17 +08:00
policy.eval()
2024-03-01 07:13:06 +08:00
start = time.time()
2024-02-22 20:14:12 +08:00
sum_rewards = []
max_rewards = []
successes = []
threads = [] # for video saving threads
episode_counter = 0 # for saving the correct number of videos
# TODO(alexander-soare): if num_episodes is not evenly divisible by the batch size, this will do more work than
# needed as I'm currently taking a ceil.
for i in tqdm.tqdm(range(-(-num_episodes // env.batch_size[0]))):
ep_frames = []
def maybe_render_frame(env: EnvBase, _):
if save_video or (return_first_video and i == 0): # noqa: B023
2024-02-29 20:37:48 +08:00
ep_frames.append(env.render()) # noqa: B023
with torch.inference_mode():
# TODO(alexander-soare): When `break_when_any_done == False` this rolls out for max_steps even when all
2024-03-20 02:50:04 +08:00
# envs are done the first time. But we only use the first rollout. This is a waste of compute.
policy.clear_action_queue()
rollout = env.rollout(
max_steps=max_steps,
policy=policy,
auto_cast_to_device=True,
callback=maybe_render_frame,
break_when_any_done=env.batch_size[0] == 1,
)
2024-03-20 02:50:04 +08:00
# Figure out where in each rollout sequence the first done condition was encountered (results after this won't
# be included).
# Note: this assumes that the shape of the done key is (batch_size, max_steps, 1).
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
rollout_steps = rollout["next", "done"].shape[1]
done_indices = torch.argmax(rollout["next", "done"].to(int), axis=1) # (batch_size, rollout_steps)
mask = (torch.arange(rollout_steps) <= done_indices).unsqueeze(-1) # (batch_size, rollout_steps, 1)
2024-03-20 17:45:45 +08:00
batch_sum_reward = einops.reduce((rollout["next", "reward"] * mask), "b n 1 -> b", "sum")
batch_max_reward = einops.reduce((rollout["next", "reward"] * mask), "b n 1 -> b", "max")
batch_success = einops.reduce((rollout["next", "success"] * mask), "b n 1 -> b", "any")
sum_rewards.extend(batch_sum_reward.tolist())
max_rewards.extend(batch_max_reward.tolist())
successes.extend(batch_success.tolist())
2024-01-31 07:30:14 +08:00
if save_video or (return_first_video and i == 0):
batch_stacked_frames = np.stack(ep_frames) # (t, b, *)
batch_stacked_frames = batch_stacked_frames.transpose(
1, 0, *range(2, batch_stacked_frames.ndim)
) # (b, t, *)
2024-02-22 20:14:12 +08:00
if save_video:
for stacked_frames, done_index in zip(
batch_stacked_frames, done_indices.flatten().tolist(), strict=False
):
if episode_counter >= num_episodes:
continue
video_dir.mkdir(parents=True, exist_ok=True)
video_path = video_dir / f"eval_episode_{episode_counter}.mp4"
thread = threading.Thread(
target=write_video,
args=(str(video_path), stacked_frames[:done_index], fps),
)
thread.start()
threads.append(thread)
episode_counter += 1
2024-02-22 20:14:12 +08:00
if return_first_video and i == 0:
first_video = batch_stacked_frames[0].transpose(0, 3, 1, 2)
for thread in threads:
thread.join()
2024-03-01 07:13:06 +08:00
info = {
"avg_sum_reward": np.nanmean(sum_rewards[:num_episodes]),
"avg_max_reward": np.nanmean(max_rewards[:num_episodes]),
"pc_success": np.nanmean(successes[:num_episodes]) * 100,
2024-03-01 07:13:06 +08:00
"eval_s": time.time() - start,
"eval_ep_s": (time.time() - start) / num_episodes,
}
if return_first_video:
2024-03-01 07:13:06 +08:00
return info, first_video
return info
@hydra.main(version_base=None, config_name="default", config_path="../configs")
2024-02-22 20:14:12 +08:00
def eval_cli(cfg: dict):
eval(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
def eval(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
init_logging()
if cfg.device == "cuda":
assert torch.cuda.is_available()
else:
logging.warning("Using CPU, this will be slow.")
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_seed(cfg.seed)
log_output_dir(out_dir)
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
logging.info("make_env")
2024-03-20 00:02:09 +08:00
env = make_env(cfg, transform=offline_buffer.transform)
2024-02-28 19:35:49 +08:00
if cfg.policy.pretrained_model_path:
policy = make_policy(cfg)
policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
out_keys=["action"],
)
else:
# when policy is None, rollout a random policy
policy = None
metrics = eval_policy(
2024-01-31 07:30:14 +08:00
env,
2024-01-31 21:54:32 +08:00
policy=policy,
save_video=True,
2024-02-22 20:14:12 +08:00
video_dir=Path(out_dir) / "eval",
2024-02-25 20:02:29 +08:00
fps=cfg.env.fps,
max_steps=cfg.env.episode_length,
2024-02-22 20:14:12 +08:00
num_episodes=cfg.eval_episodes,
2024-01-31 07:30:14 +08:00
)
print(metrics)
logging.info("End of eval")
if __name__ == "__main__":
2024-02-22 20:14:12 +08:00
eval_cli()