2024-01-29 20:49:30 +08:00
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
import imageio
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
2024-01-31 21:48:12 +08:00
|
|
|
from tensordict.nn import TensorDictModule
|
2024-01-29 20:49:30 +08:00
|
|
|
from termcolor import colored
|
2024-01-31 21:54:32 +08:00
|
|
|
from torchrl.envs import EnvBase
|
2024-01-29 20:49:30 +08:00
|
|
|
|
2024-01-31 21:48:12 +08:00
|
|
|
from lerobot.common.envs.factory import make_env
|
|
|
|
from lerobot.common.tdmpc import TDMPC
|
|
|
|
from lerobot.common.utils import set_seed
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
|
2024-01-31 21:48:12 +08:00
|
|
|
def eval_policy(
|
2024-01-31 21:54:32 +08:00
|
|
|
env: EnvBase,
|
|
|
|
policy: TensorDictModule = None,
|
|
|
|
num_episodes: int = 10,
|
|
|
|
max_steps: int = 30,
|
|
|
|
save_video: bool = False,
|
|
|
|
video_dir: Path = None,
|
2024-02-21 08:49:40 +08:00
|
|
|
fps: int = 15,
|
2024-02-22 20:14:12 +08:00
|
|
|
env_step: int = None,
|
|
|
|
wandb=None,
|
2024-01-29 20:49:30 +08:00
|
|
|
):
|
2024-02-22 20:14:12 +08:00
|
|
|
if wandb is not None:
|
|
|
|
assert env_step is not None
|
|
|
|
sum_rewards = []
|
|
|
|
max_rewards = []
|
2024-01-31 21:48:12 +08:00
|
|
|
successes = []
|
2024-01-29 20:49:30 +08:00
|
|
|
for i in range(num_episodes):
|
2024-01-31 21:48:12 +08:00
|
|
|
ep_frames = []
|
|
|
|
|
|
|
|
def rendering_callback(env, td=None):
|
2024-02-22 20:14:12 +08:00
|
|
|
ep_frames.append(env.render())
|
2024-01-31 21:48:12 +08:00
|
|
|
|
|
|
|
tensordict = env.reset()
|
2024-02-22 20:14:12 +08:00
|
|
|
if save_video or wandb:
|
2024-02-10 23:46:24 +08:00
|
|
|
# render first frame before rollout
|
|
|
|
rendering_callback(env)
|
2024-01-31 21:48:12 +08:00
|
|
|
|
2024-02-18 09:23:44 +08:00
|
|
|
with torch.inference_mode():
|
|
|
|
rollout = env.rollout(
|
|
|
|
max_steps=max_steps,
|
|
|
|
policy=policy,
|
2024-02-22 20:14:12 +08:00
|
|
|
callback=rendering_callback if save_video or wandb else None,
|
2024-02-18 09:23:44 +08:00
|
|
|
auto_reset=False,
|
|
|
|
tensordict=tensordict,
|
|
|
|
auto_cast_to_device=True,
|
|
|
|
)
|
2024-02-10 23:46:24 +08:00
|
|
|
# print(", ".join([f"{x:.3f}" for x in rollout["next", "reward"][:,0].tolist()]))
|
2024-02-22 20:14:12 +08:00
|
|
|
ep_sum_reward = rollout["next", "reward"].sum()
|
|
|
|
ep_max_reward = rollout["next", "reward"].max()
|
2024-01-31 21:48:12 +08:00
|
|
|
ep_success = rollout["next", "success"].any()
|
2024-02-22 20:14:12 +08:00
|
|
|
sum_rewards.append(ep_sum_reward.item())
|
|
|
|
max_rewards.append(ep_max_reward.item())
|
2024-01-31 21:48:12 +08:00
|
|
|
successes.append(ep_success.item())
|
2024-01-31 07:30:14 +08:00
|
|
|
|
2024-02-22 20:14:12 +08:00
|
|
|
if save_video or wandb:
|
|
|
|
stacked_frames = np.stack(ep_frames)
|
|
|
|
|
|
|
|
if save_video:
|
|
|
|
video_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
video_path = video_dir / f"eval_episode_{i}.mp4"
|
|
|
|
imageio.mimsave(video_path, stacked_frames, fps=fps)
|
|
|
|
|
|
|
|
first_episode = i == 0
|
|
|
|
if wandb and first_episode:
|
|
|
|
eval_video = wandb.Video(
|
|
|
|
stacked_frames.transpose(0, 3, 1, 2), fps=fps, format="mp4"
|
|
|
|
)
|
|
|
|
wandb.log({"eval_video": eval_video}, step=env_step)
|
2024-01-31 21:48:12 +08:00
|
|
|
|
|
|
|
metrics = {
|
2024-02-22 20:14:12 +08:00
|
|
|
"avg_sum_reward": np.nanmean(sum_rewards),
|
|
|
|
"avg_max_reward": np.nanmean(max_rewards),
|
2024-01-31 21:48:12 +08:00
|
|
|
"pc_success": np.nanmean(successes) * 100,
|
2024-01-29 20:49:30 +08:00
|
|
|
}
|
2024-01-31 21:48:12 +08:00
|
|
|
return metrics
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
2024-02-22 20:14:12 +08:00
|
|
|
def eval_cli(cfg: dict):
|
|
|
|
eval(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
def eval(cfg: dict, out_dir=None):
|
|
|
|
if out_dir is None:
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
2024-01-29 20:49:30 +08:00
|
|
|
assert torch.cuda.is_available()
|
|
|
|
set_seed(cfg.seed)
|
2024-02-22 20:14:12 +08:00
|
|
|
print(colored("Log dir:", "yellow", attrs=["bold"]), out_dir)
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
env = make_env(cfg)
|
2024-01-31 21:48:12 +08:00
|
|
|
|
2024-02-20 20:26:57 +08:00
|
|
|
if cfg.pretrained_model_path:
|
|
|
|
policy = TDMPC(cfg)
|
|
|
|
if "offline" in cfg.pretrained_model_path:
|
|
|
|
policy.step = 25000
|
|
|
|
elif "final" in cfg.pretrained_model_path:
|
|
|
|
policy.step = 100000
|
|
|
|
else:
|
|
|
|
raise NotImplementedError()
|
2024-02-21 08:49:40 +08:00
|
|
|
policy.load(cfg.pretrained_model_path)
|
2024-02-20 20:26:57 +08:00
|
|
|
|
|
|
|
policy = TensorDictModule(
|
|
|
|
policy,
|
|
|
|
in_keys=["observation", "step_count"],
|
|
|
|
out_keys=["action"],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# when policy is None, rollout a random policy
|
|
|
|
policy = None
|
|
|
|
|
2024-01-31 21:48:12 +08:00
|
|
|
metrics = eval_policy(
|
2024-01-31 07:30:14 +08:00
|
|
|
env,
|
2024-01-31 21:54:32 +08:00
|
|
|
policy=policy,
|
2024-02-20 20:26:57 +08:00
|
|
|
save_video=True,
|
2024-02-22 20:14:12 +08:00
|
|
|
video_dir=Path(out_dir) / "eval",
|
2024-02-21 08:49:40 +08:00
|
|
|
fps=cfg.fps,
|
2024-02-22 20:14:12 +08:00
|
|
|
max_steps=cfg.episode_length,
|
|
|
|
num_episodes=cfg.eval_episodes,
|
2024-01-31 07:30:14 +08:00
|
|
|
)
|
2024-01-31 21:48:12 +08:00
|
|
|
print(metrics)
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-02-22 20:14:12 +08:00
|
|
|
eval_cli()
|