lerobot/tests/test_datasets.py

303 lines
11 KiB
Python
Raw Normal View History

import json
2024-04-18 20:47:42 +08:00
import logging
from copy import deepcopy
from pathlib import Path
2024-04-18 20:47:42 +08:00
import einops
import pytest
import torch
2024-04-18 20:47:42 +08:00
from datasets import Dataset
from safetensors.torch import load_file
2024-04-18 20:47:42 +08:00
import lerobot
from lerobot.common.datasets.factory import make_dataset
2024-04-30 20:25:41 +08:00
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
)
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import (
2024-04-18 20:47:42 +08:00
compute_stats,
get_stats_einops_patterns,
)
from lerobot.common.datasets.utils import (
flatten_dict,
hf_transform_to_torch,
2024-04-18 20:47:42 +08:00
load_previous_and_future_frames,
unflatten_dict,
)
2024-04-18 20:47:42 +08:00
from lerobot.common.utils.utils import init_hydra_config
2024-04-30 20:25:41 +08:00
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE
2024-04-18 20:47:42 +08:00
@pytest.mark.parametrize("env_name, repo_id, policy_name", lerobot.env_dataset_policy_triplets)
def test_factory(env_name, repo_id, policy_name):
2024-03-28 02:33:48 +08:00
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
2024-04-18 20:47:42 +08:00
overrides=[
f"env={env_name}",
2024-04-30 23:08:59 +08:00
f"dataset_repo_id={repo_id}",
2024-04-18 20:47:42 +08:00
f"policy={policy_name}",
f"device={DEVICE}",
],
2024-03-28 02:33:48 +08:00
)
dataset = make_dataset(cfg)
2024-04-08 22:02:03 +08:00
delta_timestamps = dataset.delta_timestamps
image_keys = dataset.image_keys
item = dataset[0]
2024-04-08 22:02:03 +08:00
keys_ndim_required = [
("action", 1, True),
("episode_index", 0, True),
("frame_index", 0, True),
2024-04-08 22:02:03 +08:00
("timestamp", 0, True),
# TODO(rcadene): should we rename it agent_pos?
("observation.state", 1, True),
("next.reward", 0, False),
("next.done", 0, False),
]
# test number of dimensions
for key, ndim, required in keys_ndim_required:
if key not in item:
if required:
assert key in item, f"{key}"
else:
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
continue
2024-04-18 20:47:42 +08:00
2024-04-08 22:02:03 +08:00
if delta_timestamps is not None and key in delta_timestamps:
assert item[key].ndim == ndim + 1, f"{key}"
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
else:
assert item[key].ndim == ndim, f"{key}"
2024-04-18 20:47:42 +08:00
2024-04-08 22:02:03 +08:00
if key in image_keys:
assert item[key].dtype == torch.float32, f"{key}"
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert item[key].max() <= 1.0, f"{key}"
assert item[key].min() >= 0.0, f"{key}"
if delta_timestamps is not None and key in delta_timestamps:
# test t,c,h,w
assert item[key].shape[1] == 3, f"{key}"
else:
2024-04-18 20:47:42 +08:00
# test c,h,w
2024-04-08 22:02:03 +08:00
assert item[key].shape[0] == 3, f"{key}"
if delta_timestamps is not None:
# test missing keys in delta_timestamps
for key in delta_timestamps:
assert key in item, f"{key}"
2024-04-02 23:40:33 +08:00
2024-04-18 20:47:42 +08:00
def test_compute_stats_on_xarm():
"""Check that the statistics are computed correctly according to the stats_patterns property.
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
because we are working with a small dataset).
"""
dataset = LeRobotDataset("lerobot/xarm_lift_medium")
# reduce size of dataset sample on which stats compute is tested to 10 frames
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
2024-04-18 20:47:42 +08:00
# dataset into even batches.
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25), num_workers=0)
# get einops patterns to aggregate batches and compute statistics
stats_patterns = get_stats_einops_patterns(dataset)
# get all frames from the dataset in the same dtype and range as during compute_stats
2024-04-16 20:20:38 +08:00
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
2024-04-16 20:20:38 +08:00
batch_size=len(dataset),
shuffle=False,
)
full_batch = next(iter(dataloader))
# compute stats based on all frames from the dataset without any batching
expected_stats = {}
for k, pattern in stats_patterns.items():
full_batch[k] = full_batch[k].float()
expected_stats[k] = {}
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
2024-04-18 20:47:42 +08:00
expected_stats[k]["std"] = torch.sqrt(
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
2024-04-18 20:47:42 +08:00
)
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
# test computed stats match expected stats
for k in stats_patterns:
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
# load stats used during training which are expected to match the ones returned by computed_stats
loaded_stats = dataset.stats # noqa: F841
# TODO(rcadene): we can't test this because expected_stats is computed on a subset
# # test loaded stats match expected stats
# for k in stats_patterns:
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
def test_load_previous_and_future_frames_within_tolerance():
2024-04-18 20:47:42 +08:00
hf_dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_index": [0, 0, 0, 0, 0],
2024-04-18 20:47:42 +08:00
}
)
hf_dataset.set_transform(hf_transform_to_torch)
episode_data_index = {
"from": torch.tensor([0]),
"to": torch.tensor([5]),
}
2024-04-11 21:16:47 +08:00
delta_timestamps = {"index": [-0.2, 0, 0.139]}
tol = 0.04
item = hf_dataset[2]
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
data, is_pad = item["index"], item["index_is_pad"]
2024-04-11 21:21:06 +08:00
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
assert not is_pad.any(), "Unexpected padding detected"
2024-04-18 20:47:42 +08:00
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
2024-04-18 20:47:42 +08:00
hf_dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_index": [0, 0, 0, 0, 0],
2024-04-18 20:47:42 +08:00
}
)
hf_dataset.set_transform(hf_transform_to_torch)
episode_data_index = {
"from": torch.tensor([0]),
"to": torch.tensor([5]),
}
2024-04-11 21:16:47 +08:00
delta_timestamps = {"index": [-0.2, 0, 0.141]}
tol = 0.04
item = hf_dataset[2]
with pytest.raises(AssertionError):
load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
2024-04-18 20:47:42 +08:00
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
2024-04-18 20:47:42 +08:00
hf_dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_index": [0, 0, 0, 0, 0],
2024-04-18 20:47:42 +08:00
}
)
hf_dataset.set_transform(hf_transform_to_torch)
episode_data_index = {
"from": torch.tensor([0]),
"to": torch.tensor([5]),
}
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
tol = 0.04
item = hf_dataset[2]
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
data, is_pad = item["index"], item["index_is_pad"]
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
2024-04-18 20:47:42 +08:00
assert torch.equal(
is_pad, torch.tensor([True, False, False, True, True])
), "Padding does not match expected values"
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
2024-04-30 20:25:41 +08:00
@pytest.mark.parametrize(
"repo_id",
[
"lerobot/pusht",
2024-04-30 20:25:41 +08:00
"lerobot/aloha_sim_insertion_human",
"lerobot/xarm_lift_medium",
],
)
def test_backward_compatibility(repo_id):
"""The artifacts for this test have been generated by `tests/scripts/save_dataset_to_safetensors.py`."""
2024-04-30 20:25:41 +08:00
dataset = LeRobotDataset(
repo_id,
)
2024-04-30 20:25:41 +08:00
test_dir = Path("tests/data/save_dataset_to_safetensors") / repo_id
def load_and_compare(i):
new_frame = dataset[i] # noqa: B023
old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023
new_keys = set(new_frame.keys())
old_keys = set(old_frame.keys())
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
for key in new_frame:
assert torch.isclose(
new_frame[key], old_frame[key]
2024-04-30 20:25:41 +08:00
).all(), f"{key=} for index={i} does not contain the same value"
# test2 first frames of first episode
i = dataset.episode_data_index["from"][0].item()
load_and_compare(i)
load_and_compare(i + 1)
# test 2 frames at the middle of first episode
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
load_and_compare(i)
load_and_compare(i + 1)
# test 2 last frames of first episode
i = dataset.episode_data_index["to"][0].item()
load_and_compare(i - 2)
load_and_compare(i - 1)
# TODO(rcadene): Enable testing on second and last episode
# We currently cant because our test dataset only contains the first episode
# # test 2 first frames of second episode
# i = dataset.episode_data_index["from"][1].item()
# load_and_compare(i)
# load_and_compare(i + 1)
# # test 2 last frames of second episode
# i = dataset.episode_data_index["to"][1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)
# # test 2 last frames of last episode
# i = dataset.episode_data_index["to"][-1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)