2024-02-10 23:46:24 +08:00
|
|
|
import time
|
|
|
|
|
2024-01-29 20:49:30 +08:00
|
|
|
import hydra
|
2024-02-10 23:46:24 +08:00
|
|
|
import numpy as np
|
2024-01-29 20:49:30 +08:00
|
|
|
import torch
|
2024-02-10 23:46:24 +08:00
|
|
|
from tensordict.nn import TensorDictModule
|
2024-01-29 20:49:30 +08:00
|
|
|
from termcolor import colored
|
2024-02-10 23:46:24 +08:00
|
|
|
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
|
|
|
|
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
|
|
|
|
from torchrl.data.datasets.openx import OpenXExperienceReplay
|
|
|
|
from torchrl.data.replay_buffers import PrioritizedSliceSampler
|
2024-01-29 20:49:30 +08:00
|
|
|
|
2024-02-20 20:26:57 +08:00
|
|
|
from lerobot.common.datasets.factory import make_offline_buffer
|
2024-01-31 21:48:12 +08:00
|
|
|
from lerobot.common.envs.factory import make_env
|
2024-02-10 23:46:24 +08:00
|
|
|
from lerobot.common.logger import Logger
|
2024-02-25 18:50:23 +08:00
|
|
|
from lerobot.common.policies.factory import make_policy
|
2024-02-10 23:46:24 +08:00
|
|
|
from lerobot.common.utils import set_seed
|
|
|
|
from lerobot.scripts.eval import eval_policy
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
2024-02-22 20:14:12 +08:00
|
|
|
def train_cli(cfg: dict):
|
|
|
|
train(
|
|
|
|
cfg,
|
|
|
|
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
|
|
|
|
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def train_notebook(
|
|
|
|
out_dir=None, job_name=None, config_name="default", config_path="../configs"
|
|
|
|
):
|
|
|
|
from hydra import compose, initialize
|
|
|
|
|
|
|
|
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
|
|
|
initialize(config_path=config_path)
|
|
|
|
cfg = compose(config_name=config_name)
|
|
|
|
train(cfg, out_dir=out_dir, job_name=job_name)
|
|
|
|
|
|
|
|
|
2024-02-26 09:10:09 +08:00
|
|
|
def log_training_metrics(L, metrics, step, online_episode_idx, start_time, is_offline):
|
|
|
|
common_metrics = {
|
|
|
|
"episode": online_episode_idx,
|
|
|
|
"step": step,
|
|
|
|
"total_time": time.time() - start_time,
|
|
|
|
"is_offline": float(is_offline),
|
|
|
|
}
|
|
|
|
metrics.update(common_metrics)
|
|
|
|
L.log(metrics, category="train")
|
|
|
|
|
|
|
|
|
|
|
|
def eval_policy_and_log(
|
2024-02-27 19:44:26 +08:00
|
|
|
env, td_policy, step, online_episode_idx, start_time, cfg, L, is_offline
|
2024-02-26 09:10:09 +08:00
|
|
|
):
|
|
|
|
common_metrics = {
|
|
|
|
"episode": online_episode_idx,
|
|
|
|
"step": step,
|
|
|
|
"total_time": time.time() - start_time,
|
|
|
|
"is_offline": float(is_offline),
|
|
|
|
}
|
|
|
|
metrics, first_video = eval_policy(
|
|
|
|
env,
|
|
|
|
td_policy,
|
|
|
|
num_episodes=cfg.eval_episodes,
|
|
|
|
return_first_video=True,
|
|
|
|
)
|
|
|
|
metrics.update(common_metrics)
|
|
|
|
L.log(metrics, category="eval")
|
|
|
|
|
|
|
|
if cfg.wandb.enable:
|
|
|
|
eval_video = L._wandb.Video(first_video, fps=cfg.fps, format="mp4")
|
|
|
|
L._wandb.log({"eval_video": eval_video}, step=step)
|
|
|
|
|
|
|
|
|
2024-02-22 20:14:12 +08:00
|
|
|
def train(cfg: dict, out_dir=None, job_name=None):
|
|
|
|
if out_dir is None:
|
|
|
|
raise NotImplementedError()
|
|
|
|
if job_name is None:
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
2024-01-29 20:49:30 +08:00
|
|
|
assert torch.cuda.is_available()
|
2024-02-25 02:18:39 +08:00
|
|
|
torch.backends.cudnn.benchmark = True
|
2024-01-29 20:49:30 +08:00
|
|
|
set_seed(cfg.seed)
|
2024-02-22 20:14:12 +08:00
|
|
|
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
|
2024-01-29 20:49:30 +08:00
|
|
|
|
2024-02-27 19:44:26 +08:00
|
|
|
print("make_env")
|
2024-01-31 21:48:12 +08:00
|
|
|
env = make_env(cfg)
|
2024-02-27 19:44:26 +08:00
|
|
|
|
|
|
|
print("make_policy")
|
2024-02-25 18:50:23 +08:00
|
|
|
policy = make_policy(cfg)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
|
|
|
td_policy = TensorDictModule(
|
|
|
|
policy,
|
|
|
|
in_keys=["observation", "step_count"],
|
|
|
|
out_keys=["action"],
|
|
|
|
)
|
2024-01-31 21:48:12 +08:00
|
|
|
|
2024-02-27 19:44:26 +08:00
|
|
|
print("make_offline_buffer")
|
2024-02-20 20:26:57 +08:00
|
|
|
offline_buffer = make_offline_buffer(cfg)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
2024-02-26 01:42:47 +08:00
|
|
|
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
|
|
|
|
if cfg.policy.balanced_sampling:
|
2024-02-27 19:44:26 +08:00
|
|
|
print("make online_buffer")
|
2024-02-26 01:42:47 +08:00
|
|
|
num_traj_per_batch = cfg.policy.batch_size
|
2024-02-20 22:22:16 +08:00
|
|
|
|
2024-02-16 23:13:24 +08:00
|
|
|
online_sampler = PrioritizedSliceSampler(
|
|
|
|
max_capacity=100_000,
|
2024-02-26 01:42:47 +08:00
|
|
|
alpha=cfg.policy.per_alpha,
|
|
|
|
beta=cfg.policy.per_beta,
|
2024-02-16 23:13:24 +08:00
|
|
|
num_slices=num_traj_per_batch,
|
2024-02-22 21:04:24 +08:00
|
|
|
strict_length=True,
|
2024-02-16 23:13:24 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
online_buffer = TensorDictReplayBuffer(
|
|
|
|
storage=LazyMemmapStorage(100_000),
|
|
|
|
sampler=online_sampler,
|
|
|
|
)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
2024-02-22 20:14:12 +08:00
|
|
|
L = Logger(out_dir, job_name, cfg)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
2024-02-16 23:13:24 +08:00
|
|
|
online_episode_idx = 0
|
2024-02-10 23:46:24 +08:00
|
|
|
start_time = time.time()
|
2024-02-27 19:44:26 +08:00
|
|
|
step = 0 # number of policy update
|
2024-02-26 09:10:09 +08:00
|
|
|
|
2024-02-27 19:44:26 +08:00
|
|
|
print("First eval_policy_and_log with a random model or pretrained")
|
2024-02-26 09:10:09 +08:00
|
|
|
eval_policy_and_log(
|
2024-02-27 19:44:26 +08:00
|
|
|
env, td_policy, step, online_episode_idx, start_time, cfg, L, is_offline=True
|
2024-02-26 09:10:09 +08:00
|
|
|
)
|
|
|
|
|
2024-02-27 19:44:26 +08:00
|
|
|
for offline_step in range(cfg.offline_steps):
|
|
|
|
if offline_step == 0:
|
|
|
|
print("Start offline training on a fixed dataset")
|
2024-02-26 09:10:09 +08:00
|
|
|
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
|
|
|
metrics = policy.update(offline_buffer, step)
|
|
|
|
|
|
|
|
if step % cfg.log_freq == 0:
|
|
|
|
log_training_metrics(
|
|
|
|
L, metrics, step, online_episode_idx, start_time, is_offline=False
|
2024-02-16 23:13:24 +08:00
|
|
|
)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
2024-02-26 09:10:09 +08:00
|
|
|
if step > 0 and step % cfg.eval_freq == 0:
|
|
|
|
eval_policy_and_log(
|
2024-02-27 19:44:26 +08:00
|
|
|
env,
|
|
|
|
td_policy,
|
|
|
|
step,
|
|
|
|
online_episode_idx,
|
|
|
|
start_time,
|
|
|
|
cfg,
|
|
|
|
L,
|
|
|
|
is_offline=True,
|
2024-02-26 09:10:09 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
|
|
|
|
print(f"Checkpoint model at step {step}")
|
|
|
|
L.save_model(policy, identifier=step)
|
|
|
|
|
|
|
|
step += 1
|
|
|
|
|
|
|
|
demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None
|
2024-02-27 19:44:26 +08:00
|
|
|
for env_step in range(cfg.online_steps):
|
|
|
|
if env_step == 0:
|
|
|
|
print("Start online training by interacting with environment")
|
2024-02-26 09:10:09 +08:00
|
|
|
# TODO: use SyncDataCollector for that?
|
2024-02-27 19:44:26 +08:00
|
|
|
# TODO: add configurable number of rollout? (default=1)
|
2024-02-26 09:10:09 +08:00
|
|
|
with torch.no_grad():
|
|
|
|
rollout = env.rollout(
|
|
|
|
max_steps=cfg.env.episode_length,
|
|
|
|
policy=td_policy,
|
|
|
|
auto_cast_to_device=True,
|
|
|
|
)
|
|
|
|
assert len(rollout) <= cfg.env.episode_length
|
|
|
|
rollout["episode"] = torch.tensor(
|
|
|
|
[online_episode_idx] * len(rollout), dtype=torch.int
|
|
|
|
)
|
|
|
|
online_buffer.extend(rollout)
|
|
|
|
|
|
|
|
ep_sum_reward = rollout["next", "reward"].sum()
|
|
|
|
ep_max_reward = rollout["next", "reward"].max()
|
|
|
|
ep_success = rollout["next", "success"].any()
|
|
|
|
metrics = {
|
|
|
|
"avg_sum_reward": np.nanmean(ep_sum_reward),
|
|
|
|
"avg_max_reward": np.nanmean(ep_max_reward),
|
|
|
|
"pc_success": np.nanmean(ep_success) * 100,
|
2024-02-10 23:46:24 +08:00
|
|
|
}
|
2024-02-26 09:10:09 +08:00
|
|
|
|
|
|
|
online_episode_idx += 1
|
|
|
|
|
|
|
|
for _ in range(cfg.policy.utd):
|
|
|
|
train_metrics = policy.update(
|
|
|
|
online_buffer,
|
|
|
|
step,
|
|
|
|
demo_buffer=demo_buffer,
|
2024-02-10 23:46:24 +08:00
|
|
|
)
|
2024-02-26 09:10:09 +08:00
|
|
|
metrics.update(train_metrics)
|
|
|
|
if step % cfg.log_freq == 0:
|
|
|
|
log_training_metrics(
|
|
|
|
L, metrics, step, online_episode_idx, start_time, is_offline=False
|
|
|
|
)
|
|
|
|
|
|
|
|
if step > 0 and step & cfg.eval_freq == 0:
|
|
|
|
eval_policy_and_log(
|
|
|
|
env,
|
|
|
|
td_policy,
|
|
|
|
step,
|
|
|
|
online_episode_idx,
|
|
|
|
start_time,
|
|
|
|
cfg,
|
|
|
|
L,
|
2024-02-27 19:44:26 +08:00
|
|
|
is_offline=False,
|
2024-02-26 09:10:09 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
|
|
|
|
print(f"Checkpoint model at step {step}")
|
|
|
|
L.save_model(policy, identifier=step)
|
2024-02-10 23:46:24 +08:00
|
|
|
|
2024-02-26 09:10:09 +08:00
|
|
|
step += 1
|
2024-01-31 21:48:12 +08:00
|
|
|
|
2024-01-29 20:49:30 +08:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-02-22 20:14:12 +08:00
|
|
|
train_cli()
|