229 lines
6.8 KiB
Python
229 lines
6.8 KiB
Python
|
import shutil
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
|
||
|
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
|
||
|
|
||
|
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
|
||
|
PUSHT_FEATURES = {
|
||
|
"observation.state": {
|
||
|
"dtype": "float32",
|
||
|
"shape": (2,),
|
||
|
"names": {
|
||
|
"axes": ["x", "y"],
|
||
|
},
|
||
|
},
|
||
|
"action": {
|
||
|
"dtype": "float32",
|
||
|
"shape": (2,),
|
||
|
"names": {
|
||
|
"axes": ["x", "y"],
|
||
|
},
|
||
|
},
|
||
|
"next.reward": {
|
||
|
"dtype": "float32",
|
||
|
"shape": (1,),
|
||
|
"names": None,
|
||
|
},
|
||
|
"next.success": {
|
||
|
"dtype": "bool",
|
||
|
"shape": (1,),
|
||
|
"names": None,
|
||
|
},
|
||
|
"observation.environment_state": {
|
||
|
"dtype": "float32",
|
||
|
"shape": (16,),
|
||
|
"names": [
|
||
|
"keypoints",
|
||
|
],
|
||
|
},
|
||
|
"observation.image": {
|
||
|
"dtype": None,
|
||
|
"shape": (3, 96, 96),
|
||
|
"names": [
|
||
|
"channel",
|
||
|
"height",
|
||
|
"width",
|
||
|
],
|
||
|
},
|
||
|
}
|
||
|
|
||
|
|
||
|
def build_features(mode: str) -> dict:
|
||
|
features = PUSHT_FEATURES
|
||
|
if mode == "keypoints":
|
||
|
features.pop("observation.image")
|
||
|
else:
|
||
|
features.pop("observation.environment_state")
|
||
|
features["observation.image"]["dtype"] = mode
|
||
|
|
||
|
return features
|
||
|
|
||
|
|
||
|
def load_raw_dataset(zarr_path: Path):
|
||
|
try:
|
||
|
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
|
||
|
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||
|
)
|
||
|
except ModuleNotFoundError as e:
|
||
|
print(
|
||
|
"`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`"
|
||
|
)
|
||
|
raise e
|
||
|
|
||
|
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||
|
return zarr_data
|
||
|
|
||
|
|
||
|
def calculate_coverage(zarr_data):
|
||
|
try:
|
||
|
import pymunk
|
||
|
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||
|
except ModuleNotFoundError as e:
|
||
|
print(
|
||
|
"`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`"
|
||
|
)
|
||
|
raise e
|
||
|
|
||
|
block_pos = zarr_data["state"][:, 2:4]
|
||
|
block_angle = zarr_data["state"][:, 4]
|
||
|
|
||
|
num_frames = len(block_pos)
|
||
|
|
||
|
coverage = np.zeros((num_frames,))
|
||
|
# 8 keypoints with 2 coords each
|
||
|
keypoints = np.zeros((num_frames, 16))
|
||
|
|
||
|
# Set x, y, theta (in radians)
|
||
|
goal_pos_angle = np.array([256, 256, np.pi / 4])
|
||
|
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
|
||
|
|
||
|
for i in range(num_frames):
|
||
|
space = pymunk.Space()
|
||
|
space.gravity = 0, 0
|
||
|
space.damping = 0
|
||
|
|
||
|
# Add walls.
|
||
|
walls = [
|
||
|
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
|
||
|
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
|
||
|
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
|
||
|
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
|
||
|
]
|
||
|
space.add(*walls)
|
||
|
|
||
|
block_body, block_shapes = PushTEnv.add_tee(
|
||
|
space, block_pos[i].tolist(), block_angle[i].item()
|
||
|
)
|
||
|
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||
|
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||
|
intersection_area = goal_geom.intersection(block_geom).area
|
||
|
goal_area = goal_geom.area
|
||
|
coverage[i] = intersection_area / goal_area
|
||
|
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
||
|
|
||
|
return coverage, keypoints
|
||
|
|
||
|
|
||
|
def calculate_success(coverage: float, success_threshold: float):
|
||
|
return coverage > success_threshold
|
||
|
|
||
|
|
||
|
def calculate_reward(coverage: float, success_threshold: float):
|
||
|
return np.clip(coverage / success_threshold, 0, 1)
|
||
|
|
||
|
|
||
|
def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = True):
|
||
|
if mode not in ["video", "image", "keypoints"]:
|
||
|
raise ValueError(mode)
|
||
|
|
||
|
if (LEROBOT_HOME / repo_id).exists():
|
||
|
shutil.rmtree(LEROBOT_HOME / repo_id)
|
||
|
|
||
|
if not raw_dir.exists():
|
||
|
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
|
||
|
|
||
|
zarr_data = load_raw_dataset(zarr_path=raw_dir / "pusht_cchi_v7_replay.zarr")
|
||
|
|
||
|
env_state = zarr_data["state"][:]
|
||
|
agent_pos = env_state[:, :2]
|
||
|
|
||
|
action = zarr_data["action"][:]
|
||
|
image = zarr_data["img"] # (b, h, w, c)
|
||
|
|
||
|
episode_data_index = {
|
||
|
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
|
||
|
"to": zarr_data.meta["episode_ends"],
|
||
|
}
|
||
|
|
||
|
# Calculate success and reward based on the overlapping area
|
||
|
# of the T-object and the T-area.
|
||
|
coverage, keypoints = calculate_coverage(zarr_data)
|
||
|
success = calculate_success(coverage, success_threshold=0.95)
|
||
|
reward = calculate_reward(coverage, success_threshold=0.95)
|
||
|
|
||
|
features = build_features(mode)
|
||
|
dataset = LeRobotDataset.create(
|
||
|
repo_id=repo_id,
|
||
|
fps=10,
|
||
|
robot_type="2d pointer",
|
||
|
features=features,
|
||
|
image_writer_threads=4,
|
||
|
)
|
||
|
episodes = range(len(episode_data_index["from"]))
|
||
|
for ep_idx in episodes:
|
||
|
from_idx = episode_data_index["from"][ep_idx]
|
||
|
to_idx = episode_data_index["to"][ep_idx]
|
||
|
num_frames = to_idx - from_idx
|
||
|
|
||
|
for frame_idx in range(num_frames):
|
||
|
i = from_idx + frame_idx
|
||
|
frame = {
|
||
|
"action": torch.from_numpy(action[i]),
|
||
|
# Shift reward and success by +1 until the last item of the episode
|
||
|
"next.reward": reward[i + (frame_idx < num_frames - 1)],
|
||
|
"next.success": success[i + (frame_idx < num_frames - 1)],
|
||
|
}
|
||
|
|
||
|
frame["observation.state"] = torch.from_numpy(agent_pos[i])
|
||
|
|
||
|
if mode == "keypoints":
|
||
|
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
|
||
|
else:
|
||
|
frame["observation.image"] = torch.from_numpy(image[i])
|
||
|
|
||
|
dataset.add_frame(frame)
|
||
|
|
||
|
dataset.save_episode(task=PUSHT_TASK)
|
||
|
|
||
|
dataset.consolidate()
|
||
|
|
||
|
if push_to_hub:
|
||
|
dataset.push_to_hub()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# To try this script, modify the repo id with your own HuggingFace user (e.g cadene/pusht)
|
||
|
repo_id = "lerobot/pusht"
|
||
|
|
||
|
modes = ["video", "image", "keypoints"]
|
||
|
# Uncomment if you want to try with a specific mode
|
||
|
# modes = ["video"]
|
||
|
# modes = ["image"]
|
||
|
# modes = ["keypoints"]
|
||
|
|
||
|
raw_dir = Path("data/lerobot-raw/pusht_raw")
|
||
|
for mode in modes:
|
||
|
if mode in ["image", "keypoints"]:
|
||
|
repo_id += f"_{mode}"
|
||
|
|
||
|
# download and load raw dataset, create LeRobotDataset, populate it, push to hub
|
||
|
main(raw_dir, repo_id=repo_id, mode=mode)
|
||
|
|
||
|
# Uncomment if you want to load the local dataset and explore it
|
||
|
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
|
||
|
# breakpoint()
|