2024-04-23 20:13:25 +08:00
|
|
|
import json
|
2024-04-18 20:47:42 +08:00
|
|
|
import logging
|
2024-04-11 01:10:46 +08:00
|
|
|
import os
|
2024-04-23 20:13:25 +08:00
|
|
|
from copy import deepcopy
|
2024-04-11 01:10:46 +08:00
|
|
|
from pathlib import Path
|
2024-04-18 20:47:42 +08:00
|
|
|
|
2024-04-11 01:10:46 +08:00
|
|
|
import einops
|
2024-02-26 01:42:47 +08:00
|
|
|
import pytest
|
Add Aloha env and ACT policy
WIP Aloha env tests pass
Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1])
Update README
Copy past from act repo
Remove download.py add a WIP for Simxarm
Remove download.py add a WIP for Simxarm
Add act yaml (TODO: try train.py)
Training can runs (TODO: eval)
Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)
Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)
poetry lock
fix bug in compute_stats for action normalization
fix more bugs in normalization
fix training
fix import
PushtEnv inheriates AbstractEnv, Improve factory Normalization
Add _make_env to EnvAbstract
Add call_rendering_hooks to pusht env
SimxarmEnv inherites from AbstractEnv (NOT TESTED)
Add aloha tests artifacts + update pusht stats
fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255]
Small fix on simxarm
Add next to obs
Add top camera to Aloha env (TODO: make it compatible with set of cameras)
Add top camera to Aloha env (TODO: make it compatible with set of cameras)
2024-03-08 17:47:39 +08:00
|
|
|
import torch
|
2024-04-18 20:47:42 +08:00
|
|
|
from datasets import Dataset
|
2024-04-23 20:13:25 +08:00
|
|
|
from safetensors.torch import load_file
|
2024-02-26 01:42:47 +08:00
|
|
|
|
2024-04-18 20:47:42 +08:00
|
|
|
import lerobot
|
2024-03-31 23:05:25 +08:00
|
|
|
from lerobot.common.datasets.factory import make_dataset
|
2024-04-30 20:25:41 +08:00
|
|
|
from lerobot.common.datasets.lerobot_dataset import (
|
|
|
|
LeRobotDataset,
|
|
|
|
)
|
2024-04-18 20:47:42 +08:00
|
|
|
from lerobot.common.datasets.utils import (
|
|
|
|
compute_stats,
|
2024-04-23 20:13:25 +08:00
|
|
|
flatten_dict,
|
2024-04-18 20:47:42 +08:00
|
|
|
get_stats_einops_patterns,
|
2024-04-23 20:13:25 +08:00
|
|
|
hf_transform_to_torch,
|
2024-04-18 20:47:42 +08:00
|
|
|
load_previous_and_future_frames,
|
2024-04-23 20:13:25 +08:00
|
|
|
unflatten_dict,
|
2024-02-26 01:42:47 +08:00
|
|
|
)
|
2024-04-18 20:47:42 +08:00
|
|
|
from lerobot.common.utils.utils import init_hydra_config
|
2024-04-30 20:25:41 +08:00
|
|
|
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE
|
2024-04-18 20:47:42 +08:00
|
|
|
|
|
|
|
|
2024-04-25 18:23:12 +08:00
|
|
|
@pytest.mark.parametrize("env_name, repo_id, policy_name", lerobot.env_dataset_policy_triplets)
|
|
|
|
def test_factory(env_name, repo_id, policy_name):
|
2024-03-28 02:33:48 +08:00
|
|
|
cfg = init_hydra_config(
|
|
|
|
DEFAULT_CONFIG_PATH,
|
2024-04-18 20:47:42 +08:00
|
|
|
overrides=[
|
|
|
|
f"env={env_name}",
|
2024-04-30 23:08:59 +08:00
|
|
|
f"dataset_repo_id={repo_id}",
|
2024-04-18 20:47:42 +08:00
|
|
|
f"policy={policy_name}",
|
|
|
|
f"device={DEVICE}",
|
|
|
|
],
|
2024-03-28 02:33:48 +08:00
|
|
|
)
|
2024-03-31 23:05:25 +08:00
|
|
|
dataset = make_dataset(cfg)
|
2024-04-08 22:02:03 +08:00
|
|
|
delta_timestamps = dataset.delta_timestamps
|
|
|
|
image_keys = dataset.image_keys
|
2024-03-31 23:05:25 +08:00
|
|
|
|
|
|
|
item = dataset[0]
|
|
|
|
|
2024-04-08 22:02:03 +08:00
|
|
|
keys_ndim_required = [
|
|
|
|
("action", 1, True),
|
2024-04-23 20:13:25 +08:00
|
|
|
("episode_index", 0, True),
|
|
|
|
("frame_index", 0, True),
|
2024-04-08 22:02:03 +08:00
|
|
|
("timestamp", 0, True),
|
|
|
|
# TODO(rcadene): should we rename it agent_pos?
|
|
|
|
("observation.state", 1, True),
|
|
|
|
("next.reward", 0, False),
|
|
|
|
("next.done", 0, False),
|
|
|
|
]
|
|
|
|
|
|
|
|
# test number of dimensions
|
|
|
|
for key, ndim, required in keys_ndim_required:
|
|
|
|
if key not in item:
|
|
|
|
if required:
|
|
|
|
assert key in item, f"{key}"
|
|
|
|
else:
|
|
|
|
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
|
|
|
|
continue
|
2024-04-18 20:47:42 +08:00
|
|
|
|
2024-04-08 22:02:03 +08:00
|
|
|
if delta_timestamps is not None and key in delta_timestamps:
|
|
|
|
assert item[key].ndim == ndim + 1, f"{key}"
|
|
|
|
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
|
|
|
|
else:
|
|
|
|
assert item[key].ndim == ndim, f"{key}"
|
2024-04-18 20:47:42 +08:00
|
|
|
|
2024-04-08 22:02:03 +08:00
|
|
|
if key in image_keys:
|
|
|
|
assert item[key].dtype == torch.float32, f"{key}"
|
|
|
|
# TODO(rcadene): we assume for now that image normalization takes place in the model
|
|
|
|
assert item[key].max() <= 1.0, f"{key}"
|
|
|
|
assert item[key].min() >= 0.0, f"{key}"
|
|
|
|
|
|
|
|
if delta_timestamps is not None and key in delta_timestamps:
|
|
|
|
# test t,c,h,w
|
|
|
|
assert item[key].shape[1] == 3, f"{key}"
|
|
|
|
else:
|
2024-04-18 20:47:42 +08:00
|
|
|
# test c,h,w
|
2024-04-08 22:02:03 +08:00
|
|
|
assert item[key].shape[0] == 3, f"{key}"
|
|
|
|
|
|
|
|
if delta_timestamps is not None:
|
|
|
|
# test missing keys in delta_timestamps
|
|
|
|
for key in delta_timestamps:
|
|
|
|
assert key in item, f"{key}"
|
2024-03-31 23:05:25 +08:00
|
|
|
|
2024-04-02 23:40:33 +08:00
|
|
|
|
2024-04-18 20:47:42 +08:00
|
|
|
def test_compute_stats_on_xarm():
|
2024-04-11 01:10:46 +08:00
|
|
|
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
|
|
|
|
|
|
|
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
|
|
|
because we are working with a small dataset).
|
|
|
|
"""
|
2024-04-25 18:23:12 +08:00
|
|
|
dataset = LeRobotDataset(
|
|
|
|
"lerobot/xarm_lift_medium", root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
2024-04-11 01:10:46 +08:00
|
|
|
)
|
|
|
|
|
2024-04-25 18:23:12 +08:00
|
|
|
# reduce size of dataset sample on which stats compute is tested to 10 frames
|
|
|
|
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
|
|
|
|
|
2024-04-11 01:10:46 +08:00
|
|
|
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
|
|
|
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
2024-04-18 20:47:42 +08:00
|
|
|
# dataset into even batches.
|
2024-04-23 20:13:25 +08:00
|
|
|
computed_stats = compute_stats(dataset.hf_dataset, batch_size=int(len(dataset) * 0.25))
|
2024-04-11 01:10:46 +08:00
|
|
|
|
|
|
|
# get einops patterns to aggregate batches and compute statistics
|
2024-04-23 20:13:25 +08:00
|
|
|
stats_patterns = get_stats_einops_patterns(dataset.hf_dataset)
|
2024-04-11 01:10:46 +08:00
|
|
|
|
|
|
|
# get all frames from the dataset in the same dtype and range as during compute_stats
|
2024-04-16 20:20:38 +08:00
|
|
|
dataloader = torch.utils.data.DataLoader(
|
|
|
|
dataset,
|
2024-04-17 01:14:40 +08:00
|
|
|
num_workers=8,
|
2024-04-16 20:20:38 +08:00
|
|
|
batch_size=len(dataset),
|
|
|
|
shuffle=False,
|
|
|
|
)
|
2024-04-23 20:13:25 +08:00
|
|
|
full_batch = next(iter(dataloader))
|
2024-04-11 01:10:46 +08:00
|
|
|
|
|
|
|
# compute stats based on all frames from the dataset without any batching
|
|
|
|
expected_stats = {}
|
|
|
|
for k, pattern in stats_patterns.items():
|
2024-04-23 20:13:25 +08:00
|
|
|
full_batch[k] = full_batch[k].float()
|
2024-04-11 01:10:46 +08:00
|
|
|
expected_stats[k] = {}
|
2024-04-23 20:13:25 +08:00
|
|
|
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
|
2024-04-18 20:47:42 +08:00
|
|
|
expected_stats[k]["std"] = torch.sqrt(
|
2024-04-23 20:13:25 +08:00
|
|
|
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
2024-04-18 20:47:42 +08:00
|
|
|
)
|
2024-04-23 20:13:25 +08:00
|
|
|
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
|
|
|
|
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
|
2024-04-11 01:10:46 +08:00
|
|
|
|
|
|
|
# test computed stats match expected stats
|
|
|
|
for k in stats_patterns:
|
|
|
|
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
|
|
|
|
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
|
|
|
|
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
|
|
|
|
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
|
|
|
|
|
2024-04-23 20:13:25 +08:00
|
|
|
# load stats used during training which are expected to match the ones returned by computed_stats
|
|
|
|
loaded_stats = dataset.stats # noqa: F841
|
2024-04-11 01:10:46 +08:00
|
|
|
|
2024-04-23 20:13:25 +08:00
|
|
|
# TODO(rcadene): we can't test this because expected_stats is computed on a subset
|
2024-04-11 01:10:46 +08:00
|
|
|
# # test loaded stats match expected stats
|
|
|
|
# for k in stats_patterns:
|
|
|
|
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
|
|
|
|
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
|
|
|
|
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
|
|
|
|
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
|
2024-04-11 20:59:09 +08:00
|
|
|
|
|
|
|
|
2024-04-15 18:08:10 +08:00
|
|
|
def test_load_previous_and_future_frames_within_tolerance():
|
2024-04-18 20:47:42 +08:00
|
|
|
hf_dataset = Dataset.from_dict(
|
|
|
|
{
|
|
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
|
|
"index": [0, 1, 2, 3, 4],
|
2024-04-23 20:13:25 +08:00
|
|
|
"episode_index": [0, 0, 0, 0, 0],
|
2024-04-18 20:47:42 +08:00
|
|
|
}
|
|
|
|
)
|
2024-04-23 20:13:25 +08:00
|
|
|
hf_dataset.set_transform(hf_transform_to_torch)
|
|
|
|
episode_data_index = {
|
|
|
|
"from": torch.tensor([0]),
|
|
|
|
"to": torch.tensor([5]),
|
|
|
|
}
|
2024-04-11 21:16:47 +08:00
|
|
|
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
2024-04-11 20:59:09 +08:00
|
|
|
tol = 0.04
|
2024-04-23 20:13:25 +08:00
|
|
|
item = hf_dataset[2]
|
|
|
|
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
2024-04-15 18:08:10 +08:00
|
|
|
data, is_pad = item["index"], item["index_is_pad"]
|
2024-04-11 21:21:06 +08:00
|
|
|
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
|
2024-04-15 18:08:10 +08:00
|
|
|
assert not is_pad.any(), "Unexpected padding detected"
|
2024-04-11 20:59:09 +08:00
|
|
|
|
2024-04-18 20:47:42 +08:00
|
|
|
|
2024-04-15 18:08:10 +08:00
|
|
|
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
2024-04-18 20:47:42 +08:00
|
|
|
hf_dataset = Dataset.from_dict(
|
|
|
|
{
|
|
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
|
|
"index": [0, 1, 2, 3, 4],
|
2024-04-23 20:13:25 +08:00
|
|
|
"episode_index": [0, 0, 0, 0, 0],
|
2024-04-18 20:47:42 +08:00
|
|
|
}
|
|
|
|
)
|
2024-04-23 20:13:25 +08:00
|
|
|
hf_dataset.set_transform(hf_transform_to_torch)
|
|
|
|
episode_data_index = {
|
|
|
|
"from": torch.tensor([0]),
|
|
|
|
"to": torch.tensor([5]),
|
|
|
|
}
|
2024-04-11 21:16:47 +08:00
|
|
|
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
|
|
|
tol = 0.04
|
2024-04-23 20:13:25 +08:00
|
|
|
item = hf_dataset[2]
|
2024-04-11 20:59:09 +08:00
|
|
|
with pytest.raises(AssertionError):
|
2024-04-23 20:13:25 +08:00
|
|
|
load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
2024-04-15 18:08:10 +08:00
|
|
|
|
2024-04-18 20:47:42 +08:00
|
|
|
|
2024-04-15 18:08:10 +08:00
|
|
|
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
2024-04-18 20:47:42 +08:00
|
|
|
hf_dataset = Dataset.from_dict(
|
|
|
|
{
|
|
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
|
|
|
"index": [0, 1, 2, 3, 4],
|
2024-04-23 20:13:25 +08:00
|
|
|
"episode_index": [0, 0, 0, 0, 0],
|
2024-04-18 20:47:42 +08:00
|
|
|
}
|
|
|
|
)
|
2024-04-23 20:13:25 +08:00
|
|
|
hf_dataset.set_transform(hf_transform_to_torch)
|
|
|
|
episode_data_index = {
|
|
|
|
"from": torch.tensor([0]),
|
|
|
|
"to": torch.tensor([5]),
|
|
|
|
}
|
2024-04-11 20:59:09 +08:00
|
|
|
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
|
|
|
tol = 0.04
|
2024-04-23 20:13:25 +08:00
|
|
|
item = hf_dataset[2]
|
|
|
|
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
2024-04-15 18:08:10 +08:00
|
|
|
data, is_pad = item["index"], item["index_is_pad"]
|
2024-04-11 20:59:09 +08:00
|
|
|
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
2024-04-18 20:47:42 +08:00
|
|
|
assert torch.equal(
|
|
|
|
is_pad, torch.tensor([True, False, False, True, True])
|
|
|
|
), "Padding does not match expected values"
|
2024-04-23 20:13:25 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_flatten_unflatten_dict():
|
|
|
|
d = {
|
|
|
|
"obs": {
|
|
|
|
"min": 0,
|
|
|
|
"max": 1,
|
|
|
|
"mean": 2,
|
|
|
|
"std": 3,
|
|
|
|
},
|
|
|
|
"action": {
|
|
|
|
"min": 4,
|
|
|
|
"max": 5,
|
|
|
|
"mean": 6,
|
|
|
|
"std": 7,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
original_d = deepcopy(d)
|
|
|
|
d = unflatten_dict(flatten_dict(d))
|
|
|
|
|
|
|
|
# test equality between nested dicts
|
|
|
|
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
|
|
|
|
|
|
|
|
|
2024-04-30 20:25:41 +08:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"repo_id",
|
|
|
|
[
|
2024-04-29 06:08:17 +08:00
|
|
|
"lerobot/pusht",
|
2024-04-30 20:25:41 +08:00
|
|
|
"lerobot/aloha_sim_insertion_human",
|
|
|
|
"lerobot/xarm_lift_medium",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_backward_compatibility(repo_id):
|
|
|
|
"""The artifacts for this test have been generated by `tests/scripts/save_dataset_to_safetensors.py`."""
|
2024-04-29 06:08:17 +08:00
|
|
|
|
2024-04-30 20:25:41 +08:00
|
|
|
dataset = LeRobotDataset(
|
|
|
|
repo_id,
|
|
|
|
root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None,
|
|
|
|
)
|
2024-04-29 06:08:17 +08:00
|
|
|
|
2024-04-30 20:25:41 +08:00
|
|
|
test_dir = Path("tests/data/save_dataset_to_safetensors") / repo_id
|
|
|
|
|
|
|
|
def load_and_compare(i):
|
|
|
|
new_frame = dataset[i] # noqa: B023
|
|
|
|
old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023
|
|
|
|
|
|
|
|
new_keys = set(new_frame.keys())
|
|
|
|
old_keys = set(old_frame.keys())
|
|
|
|
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
|
|
|
|
|
|
|
|
for key in new_frame:
|
|
|
|
assert torch.isclose(
|
|
|
|
new_frame[key], old_frame[key], rtol=1e-05, atol=1e-08
|
|
|
|
).all(), f"{key=} for index={i} does not contain the same value"
|
|
|
|
|
|
|
|
# test2 first frames of first episode
|
|
|
|
i = dataset.episode_data_index["from"][0].item()
|
|
|
|
load_and_compare(i)
|
|
|
|
load_and_compare(i + 1)
|
|
|
|
|
|
|
|
# test 2 frames at the middle of first episode
|
|
|
|
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
|
|
|
|
load_and_compare(i)
|
|
|
|
load_and_compare(i + 1)
|
|
|
|
|
|
|
|
# test 2 last frames of first episode
|
|
|
|
i = dataset.episode_data_index["to"][0].item()
|
|
|
|
load_and_compare(i - 2)
|
|
|
|
load_and_compare(i - 1)
|
|
|
|
|
|
|
|
# TODO(rcadene): Enable testing on second and last episode
|
|
|
|
# We currently cant because our test dataset only contains the first episode
|
|
|
|
|
|
|
|
# # test 2 first frames of second episode
|
|
|
|
# i = dataset.episode_data_index["from"][1].item()
|
|
|
|
# load_and_compare(i)
|
|
|
|
# load_and_compare(i + 1)
|
|
|
|
|
|
|
|
# # test 2 last frames of second episode
|
|
|
|
# i = dataset.episode_data_index["to"][1].item()
|
|
|
|
# load_and_compare(i - 2)
|
|
|
|
# load_and_compare(i - 1)
|
|
|
|
|
|
|
|
# # test 2 last frames of last episode
|
|
|
|
# i = dataset.episode_data_index["to"][-1].item()
|
|
|
|
# load_and_compare(i - 2)
|
|
|
|
# load_and_compare(i - 1)
|