lerobot/lerobot/configs/policy/vqbet.yaml

104 lines
2.7 KiB
YAML
Raw Normal View History

2024-06-26 15:55:02 +08:00
# @package _global_
# Defaults for training for the PushT dataset.
seed: 100000
dataset_repo_id: lerobot/pusht
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
training:
offline_steps: 250000
online_steps: 0
2024-07-04 17:53:29 +08:00
eval_freq: 25000
save_freq: 25000
2024-06-26 15:55:02 +08:00
save_checkpoint: true
batch_size: 64
grad_clip_norm: 10
lr: 1.0e-4
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas: [0.95, 0.999]
adam_eps: 1.0e-8
adam_weight_decay: 1.0e-6
online_steps_between_rollouts: 1
# VQ-BeT specific
vqvae_lr: 1.0e-3
n_vqvae_training_steps: 20000
bet_weight_decay: 2e-4
bet_learning_rate: 5.5e-5
bet_betas: [0.9, 0.999]
delta_timestamps:
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, ${policy.n_action_pred_token} + ${policy.action_chunk_size} - 1)]"
eval:
n_episodes: 50
batch_size: 50
policy:
name: vqbet
# Input / output structure.
n_obs_steps: 5
n_action_pred_token: 7
action_chunk_size: 5
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.image: [3, 96, 96]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
# Architecture / modeling.
# Vision backbone.
vision_backbone: resnet18
crop_shape: [84, 84]
crop_is_random: True
pretrained_backbone_weights: null
use_group_norm: True
spatial_softmax_num_keypoints: 32
# VQ-VAE
n_vqvae_training_steps: ${training.n_vqvae_training_steps}
vqvae_n_embed: 16
vqvae_embedding_dim: 256
vqvae_enc_hidden_dim: 128
# VQ-BeT
gpt_block_size: 500
gpt_input_dim: 512
gpt_output_dim: 512
gpt_n_layer: 8
gpt_n_head: 8
gpt_hidden_dim: 512
dropout: 0.1
mlp_hidden_dim: 1024
offset_loss_weight: 10000.
primary_code_loss_weight: 5.0
secondary_code_loss_weight: 0.5
bet_softmax_temperature: 0.1
sequentially_select: False