lerobot/tests/test_datasets.py

80 lines
3.0 KiB
Python
Raw Normal View History

import pytest
import torch
2024-03-28 02:33:48 +08:00
from lerobot.common.utils import init_hydra_config
import logging
from lerobot.common.datasets.factory import make_dataset
2024-03-28 02:33:48 +08:00
from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
2024-03-06 21:55:12 +08:00
"env_name,dataset_id",
[
2024-03-25 23:35:46 +08:00
("simxarm", "lift"),
2024-03-06 21:55:12 +08:00
("pusht", "pusht"),
("aloha", "sim_insertion_human"),
("aloha", "sim_insertion_scripted"),
("aloha", "sim_transfer_cube_human"),
("aloha", "sim_transfer_cube_scripted"),
],
)
2024-03-06 21:55:12 +08:00
def test_factory(env_name, dataset_id):
2024-03-28 02:33:48 +08:00
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[f"env={env_name}", f"env.task={dataset_id}", f"device={DEVICE}"]
)
dataset = make_dataset(cfg)
item = dataset[0]
assert "action" in item
assert "episode" in item
assert "frame_id" in item
assert "timestamp" in item
assert "next.done" in item
# TODO(rcadene): should we rename it agent_pos?
assert "observation.state" in item
for key in dataset.image_keys:
img = item.get(key)
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
2024-04-02 23:40:33 +08:00
if "next.reward" not in item:
logging.warning(f'Missing "next.reward" key in dataset {dataset}.')
if "next.done" not in item:
logging.warning(f'Missing "next.done" key in dataset {dataset}.')
2024-04-02 23:40:33 +08:00
# def test_compute_stats():
# """Check that the statistics are computed correctly according to the stats_patterns property.
2024-04-02 23:40:33 +08:00
# We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
# because we are working with a small dataset).
# """
# cfg = init_hydra_config(
# DEFAULT_CONFIG_PATH, overrides=["env=aloha", "env.task=sim_transfer_cube_human"]
# )
# dataset = make_dataset(cfg)
# # Get all of the data.
# all_data = TensorDictReplayBuffer(
# storage=buffer._storage,
# batch_size=len(buffer),
# sampler=SamplerWithoutReplacement(),
# ).sample().float()
# # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# # computation of the statistics. While doing this, we also make sure it works when we don't divide the
# # dataset into even batches.
# computed_stats = buffer._compute_stats(batch_size=int(len(all_data) * 0.75))
# for k, pattern in buffer.stats_patterns.items():
# expected_mean = einops.reduce(all_data[k], pattern, "mean")
# assert torch.allclose(computed_stats[k]["mean"], expected_mean)
# assert torch.allclose(
# computed_stats[k]["std"],
# torch.sqrt(einops.reduce((all_data[k] - expected_mean) ** 2, pattern, "mean"))
# )
# assert torch.allclose(computed_stats[k]["min"], einops.reduce(all_data[k], pattern, "min"))
# assert torch.allclose(computed_stats[k]["max"], einops.reduce(all_data[k], pattern, "max"))