lerobot/tests/test_datasets.py

445 lines
17 KiB
Python
Raw Normal View History

2024-05-15 18:13:09 +08:00
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
2024-04-18 20:47:42 +08:00
import logging
from copy import deepcopy
from itertools import chain
from pathlib import Path
2024-04-18 20:47:42 +08:00
import einops
import pytest
import torch
2024-04-18 20:47:42 +08:00
from datasets import Dataset
from huggingface_hub import HfApi
from safetensors.torch import load_file
2024-04-18 20:47:42 +08:00
import lerobot
from lerobot.common.datasets.compute_stats import (
aggregate_stats,
2024-04-18 20:47:42 +08:00
compute_stats,
get_stats_einops_patterns,
)
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
MultiLeRobotDataset,
)
from lerobot.common.datasets.utils import (
create_branch,
flatten_dict,
hf_transform_to_torch,
unflatten_dict,
)
from lerobot.common.envs.factory import make_env_config
from lerobot.common.policies.factory import make_policy_config
from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.common.utils.utils import seeded_context
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from tests.fixtures.constants import DUMMY_REPO_ID
from tests.utils import DEVICE, require_x86_64_kernel
def test_same_attributes_defined(lerobot_dataset_factory, tmp_path):
"""
Instantiate a LeRobotDataset both ways with '__init__()' and 'create()' and verify that instantiated
objects have the same sets of attributes defined.
"""
# Instantiate both ways
robot = make_robot("koch", mock=True)
root_create = tmp_path / "create"
dataset_create = LeRobotDataset.create(repo_id=DUMMY_REPO_ID, fps=30, robot=robot, root=root_create)
root_init = tmp_path / "init"
dataset_init = lerobot_dataset_factory(root=root_init)
# Access the '_hub_version' cached_property in both instances to force its creation
_ = dataset_init.meta._hub_version
_ = dataset_create.meta._hub_version
init_attr = set(vars(dataset_init).keys())
create_attr = set(vars(dataset_create).keys())
assert init_attr == create_attr
def test_dataset_initialization(lerobot_dataset_factory, tmp_path):
kwargs = {
"repo_id": DUMMY_REPO_ID,
"total_episodes": 10,
"total_frames": 400,
"episodes": [2, 5, 6],
}
dataset = lerobot_dataset_factory(root=tmp_path, **kwargs)
2024-04-18 20:47:42 +08:00
assert dataset.repo_id == kwargs["repo_id"]
assert dataset.meta.total_episodes == kwargs["total_episodes"]
assert dataset.meta.total_frames == kwargs["total_frames"]
assert dataset.episodes == kwargs["episodes"]
assert dataset.num_episodes == len(kwargs["episodes"])
assert dataset.num_frames == len(dataset)
2024-04-18 20:47:42 +08:00
# TODO(aliberts):
# - [ ] test various attributes & state from init and create
# - [ ] test init with episodes and check num_frames
# - [ ] test add_frame
# - [ ] test add_episode
# - [ ] test consolidate
# - [ ] test push_to_hub
# - [ ] test smaller methods
@pytest.mark.parametrize(
"env_name, repo_id, policy_name",
# Single dataset
lerobot.env_dataset_policy_triplets,
# Multi-dataset
# TODO after fix multidataset
# + [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")],
)
def test_factory(env_name, repo_id, policy_name):
"""
Tests that:
- we can create a dataset with the factory.
- for a commonly used set of data keys, the data dimensions are correct.
"""
cfg = TrainPipelineConfig(
# TODO(rcadene, aliberts): remove dataset download
dataset=DatasetConfig(repo_id=repo_id, episodes=[0]),
env=make_env_config(env_name),
policy=make_policy_config(policy_name),
device=DEVICE,
2024-03-28 02:33:48 +08:00
)
dataset = make_dataset(cfg)
2024-04-08 22:02:03 +08:00
delta_timestamps = dataset.delta_timestamps
camera_keys = dataset.meta.camera_keys
item = dataset[0]
2024-04-08 22:02:03 +08:00
keys_ndim_required = [
("action", 1, True),
("episode_index", 0, True),
("frame_index", 0, True),
2024-04-08 22:02:03 +08:00
("timestamp", 0, True),
# TODO(rcadene): should we rename it agent_pos?
("observation.state", 1, True),
("next.reward", 0, False),
("next.done", 0, False),
]
# test number of dimensions
for key, ndim, required in keys_ndim_required:
if key not in item:
if required:
assert key in item, f"{key}"
else:
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
continue
2024-04-18 20:47:42 +08:00
2024-04-08 22:02:03 +08:00
if delta_timestamps is not None and key in delta_timestamps:
assert item[key].ndim == ndim + 1, f"{key}"
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
else:
assert item[key].ndim == ndim, f"{key}"
2024-04-18 20:47:42 +08:00
if key in camera_keys:
2024-04-08 22:02:03 +08:00
assert item[key].dtype == torch.float32, f"{key}"
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert item[key].max() <= 1.0, f"{key}"
assert item[key].min() >= 0.0, f"{key}"
if delta_timestamps is not None and key in delta_timestamps:
# test t,c,h,w
assert item[key].shape[1] == 3, f"{key}"
else:
2024-04-18 20:47:42 +08:00
# test c,h,w
2024-04-08 22:02:03 +08:00
assert item[key].shape[0] == 3, f"{key}"
if delta_timestamps is not None:
# test missing keys in delta_timestamps
for key in delta_timestamps:
assert key in item, f"{key}"
2024-04-02 23:40:33 +08:00
# TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds.
@pytest.mark.skip("TODO after fix multidataset")
def test_multidataset_frames():
"""Check that all dataset frames are incorporated."""
# Note: use the image variants of the dataset to make the test approx 3x faster.
# Note: We really do need three repo_ids here as at some point this caught an issue with the chaining
# logic that wouldn't be caught with two repo IDs.
repo_ids = [
"lerobot/aloha_sim_insertion_human_image",
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_insertion_scripted_image",
]
sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids]
dataset = MultiLeRobotDataset(repo_ids)
assert len(dataset) == sum(len(d) for d in sub_datasets)
assert dataset.num_frames == sum(d.num_frames for d in sub_datasets)
assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets)
# Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and
# check they match.
expected_dataset_indices = []
for i, sub_dataset in enumerate(sub_datasets):
expected_dataset_indices.extend([i] * len(sub_dataset))
for expected_dataset_index, sub_dataset_item, dataset_item in zip(
expected_dataset_indices, chain(*sub_datasets), dataset, strict=True
):
dataset_index = dataset_item.pop("dataset_index")
assert dataset_index == expected_dataset_index
assert sub_dataset_item.keys() == dataset_item.keys()
for k in sub_dataset_item:
assert torch.equal(sub_dataset_item[k], dataset_item[k])
# TODO(aliberts, rcadene): Refactor and move this to a tests/test_compute_stats.py
2024-04-18 20:47:42 +08:00
def test_compute_stats_on_xarm():
"""Check that the statistics are computed correctly according to the stats_patterns property.
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
because we are working with a small dataset).
"""
# TODO(rcadene, aliberts): remove dataset download
dataset = LeRobotDataset("lerobot/xarm_lift_medium", episodes=[0])
# reduce size of dataset sample on which stats compute is tested to 10 frames
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
2024-04-18 20:47:42 +08:00
# dataset into even batches.
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25), num_workers=0)
# get einops patterns to aggregate batches and compute statistics
stats_patterns = get_stats_einops_patterns(dataset)
# get all frames from the dataset in the same dtype and range as during compute_stats
2024-04-16 20:20:38 +08:00
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
2024-04-16 20:20:38 +08:00
batch_size=len(dataset),
shuffle=False,
)
full_batch = next(iter(dataloader))
# compute stats based on all frames from the dataset without any batching
expected_stats = {}
for k, pattern in stats_patterns.items():
full_batch[k] = full_batch[k].float()
expected_stats[k] = {}
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
2024-04-18 20:47:42 +08:00
expected_stats[k]["std"] = torch.sqrt(
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
2024-04-18 20:47:42 +08:00
)
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
# test computed stats match expected stats
for k in stats_patterns:
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
# load stats used during training which are expected to match the ones returned by computed_stats
loaded_stats = dataset.meta.stats # noqa: F841
# TODO(rcadene): we can't test this because expected_stats is computed on a subset
# # test loaded stats match expected stats
# for k in stats_patterns:
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
# TODO(aliberts): Move to more appropriate location
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
2024-04-30 20:25:41 +08:00
@pytest.mark.parametrize(
"repo_id",
[
"lerobot/pusht",
2024-04-30 20:25:41 +08:00
"lerobot/aloha_sim_insertion_human",
"lerobot/xarm_lift_medium",
# (michel-aractingi) commenting the two datasets from openx as test is failing
# "lerobot/nyu_franka_play_dataset",
# "lerobot/cmu_stretch",
2024-04-30 20:25:41 +08:00
],
)
@require_x86_64_kernel
2024-04-30 20:25:41 +08:00
def test_backward_compatibility(repo_id):
"""The artifacts for this test have been generated by `tests/scripts/save_dataset_to_safetensors.py`."""
# TODO(rcadene, aliberts): remove dataset download
dataset = LeRobotDataset(repo_id, episodes=[0])
2024-04-30 20:25:41 +08:00
test_dir = Path("tests/data/save_dataset_to_safetensors") / repo_id
def load_and_compare(i):
new_frame = dataset[i] # noqa: B023
old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023
# ignore language instructions (if exists) in language conditioned datasets
# TODO (michel-aractingi): transform language obs to langauge embeddings via tokenizer
new_frame.pop("language_instruction", None)
old_frame.pop("language_instruction", None)
# Remove task_index to allow for backward compatibility
# TODO(rcadene): remove when new features have been generated
if "task_index" not in old_frame:
del new_frame["task_index"]
2024-04-30 20:25:41 +08:00
new_keys = set(new_frame.keys())
old_keys = set(old_frame.keys())
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
for key in new_frame:
assert torch.isclose(
new_frame[key], old_frame[key]
2024-04-30 20:25:41 +08:00
).all(), f"{key=} for index={i} does not contain the same value"
# test2 first frames of first episode
i = dataset.episode_data_index["from"][0].item()
load_and_compare(i)
load_and_compare(i + 1)
# test 2 frames at the middle of first episode
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
load_and_compare(i)
load_and_compare(i + 1)
# test 2 last frames of first episode
i = dataset.episode_data_index["to"][0].item()
load_and_compare(i - 2)
load_and_compare(i - 1)
# TODO(rcadene): Enable testing on second and last episode
# We currently cant because our test dataset only contains the first episode
# # test 2 first frames of second episode
# i = dataset.episode_data_index["from"][1].item()
# load_and_compare(i)
# load_and_compare(i + 1)
# # test 2 last frames of second episode
# i = dataset.episode_data_index["to"][1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)
# # test 2 last frames of last episode
# i = dataset.episode_data_index["to"][-1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)
@pytest.mark.skip("TODO after fix multidataset")
def test_multidataset_aggregate_stats():
"""Makes 3 basic datasets and checks that aggregate stats are computed correctly."""
with seeded_context(0):
data_a = torch.rand(30, dtype=torch.float32)
data_b = torch.rand(20, dtype=torch.float32)
data_c = torch.rand(20, dtype=torch.float32)
hf_dataset_1 = Dataset.from_dict(
{"a": data_a[:10], "b": data_b[:10], "c": data_c[:10], "index": torch.arange(10)}
)
hf_dataset_1.set_transform(hf_transform_to_torch)
hf_dataset_2 = Dataset.from_dict({"a": data_a[10:20], "b": data_b[10:], "index": torch.arange(10)})
hf_dataset_2.set_transform(hf_transform_to_torch)
hf_dataset_3 = Dataset.from_dict({"a": data_a[20:], "c": data_c[10:], "index": torch.arange(10)})
hf_dataset_3.set_transform(hf_transform_to_torch)
dataset_1 = LeRobotDataset.from_preloaded("d1", hf_dataset=hf_dataset_1)
dataset_1.stats = compute_stats(dataset_1, batch_size=len(hf_dataset_1), num_workers=0)
dataset_2 = LeRobotDataset.from_preloaded("d2", hf_dataset=hf_dataset_2)
dataset_2.stats = compute_stats(dataset_2, batch_size=len(hf_dataset_2), num_workers=0)
dataset_3 = LeRobotDataset.from_preloaded("d3", hf_dataset=hf_dataset_3)
dataset_3.stats = compute_stats(dataset_3, batch_size=len(hf_dataset_3), num_workers=0)
stats = aggregate_stats([dataset_1, dataset_2, dataset_3])
for data_key, data in zip(["a", "b", "c"], [data_a, data_b, data_c], strict=True):
for agg_fn in ["mean", "min", "max"]:
assert torch.allclose(stats[data_key][agg_fn], einops.reduce(data, "n -> 1", agg_fn))
assert torch.allclose(stats[data_key]["std"], torch.std(data, correction=0))
@pytest.mark.skip("Requires internet access")
def test_create_branch():
api = HfApi()
repo_id = "cadene/test_create_branch"
repo_type = "dataset"
branch = "test"
ref = f"refs/heads/{branch}"
# Prepare a repo with a test branch
api.delete_repo(repo_id, repo_type=repo_type, missing_ok=True)
api.create_repo(repo_id, repo_type=repo_type)
create_branch(repo_id, repo_type=repo_type, branch=branch)
# Make sure the test branch exists
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
refs = [branch.ref for branch in branches]
assert ref in refs
# Overwrite it
create_branch(repo_id, repo_type=repo_type, branch=branch)
# Clean
api.delete_repo(repo_id, repo_type=repo_type)
2025-01-30 04:54:49 +08:00
def test_dataset_feature_with_forward_slash_raises_error():
# make sure dir does not exist
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME
dataset_dir = LEROBOT_HOME / "lerobot/test/with/slash"
# make sure does not exist
if dataset_dir.exists():
dataset_dir.rmdir()
with pytest.raises(ValueError):
LeRobotDataset.create(
repo_id="lerobot/test/with/slash",
fps=30,
features={"a/b": {"dtype": "float32", "shape": 2, "names": None}},
)