lerobot/lerobot/common/datasets/factory.py

45 lines
1.4 KiB
Python
Raw Normal View History

import logging
2024-04-16 20:20:38 +08:00
import os
2024-03-15 20:44:52 +08:00
from pathlib import Path
2024-03-01 21:31:54 +08:00
import torch
from omegaconf import OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
2024-04-16 20:20:38 +08:00
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
def make_dataset(
2024-03-22 18:26:55 +08:00
cfg,
2024-04-16 20:20:38 +08:00
split="train",
):
if cfg.env.name not in cfg.dataset.repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({cfg.dataset.repo_id=}) and your environment ({cfg.env.name=})."
)
delta_timestamps = cfg.policy.get("delta_timestamps")
if delta_timestamps is not None:
for key in delta_timestamps:
if isinstance(delta_timestamps[key], str):
delta_timestamps[key] = eval(delta_timestamps[key])
2024-03-05 18:20:57 +08:00
# TODO(rcadene): add data augmentations
dataset = LeRobotDataset(
cfg.dataset.repo_id,
2024-04-16 20:20:38 +08:00
split=split,
root=DATA_DIR,
delta_timestamps=delta_timestamps,
)
if cfg.get("override_dataset_stats"):
for key, stats_dict in cfg.override_dataset_stats.items():
for stats_type, listconfig in stats_dict.items():
# example of stats_type: min, max, mean, std
stats = OmegaConf.to_container(listconfig, resolve=True)
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
return dataset