46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
|
import torch
|
||
|
|
||
|
from lerobot.common.datasets.factory import make_dataset
|
||
|
from lerobot.common.policies.factory import make_policy
|
||
|
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
|
||
|
from tests.utils import DEFAULT_CONFIG_PATH
|
||
|
|
||
|
|
||
|
def main(env_name, policy_name, extra_overrides):
|
||
|
cfg = init_hydra_config(
|
||
|
DEFAULT_CONFIG_PATH,
|
||
|
overrides=[
|
||
|
f"env={env_name}",
|
||
|
f"policy={policy_name}",
|
||
|
"device=cpu",
|
||
|
]
|
||
|
+ extra_overrides,
|
||
|
)
|
||
|
set_global_seed(1337)
|
||
|
dataset = make_dataset(cfg)
|
||
|
policy = make_policy(cfg, dataset_stats=dataset.stats)
|
||
|
|
||
|
dataloader = torch.utils.data.DataLoader(
|
||
|
dataset,
|
||
|
num_workers=0,
|
||
|
batch_size=1,
|
||
|
shuffle=False,
|
||
|
)
|
||
|
batch = next(iter(dataloader))
|
||
|
|
||
|
obs = {}
|
||
|
for k in batch:
|
||
|
if k.startswith("observation"):
|
||
|
obs[k] = batch[k]
|
||
|
|
||
|
actions = policy.inference(obs)
|
||
|
|
||
|
action, timestamp = policy.select_action(obs)
|
||
|
|
||
|
print(actions[0])
|
||
|
print(action)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main("aloha", "act", ["policy.n_action_steps=10"])
|