pass entire config to make_optimizer

This commit is contained in:
Michel Aractingi 2024-09-02 08:20:17 +00:00
parent 3034272229
commit 06fc9b89e1
7 changed files with 24 additions and 29 deletions

View File

@ -160,9 +160,8 @@ class ACTPolicy(
return loss_dict
def make_optimizer_and_scheduler(self, **kwargs):
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for ACT"""
lr, lr_backbone, weight_decay = kwargs["lr"], kwargs["lr_backbone"], kwargs["weight_decay"]
optimizer_params_dicts = [
{
"params": [
@ -177,10 +176,12 @@ class ACTPolicy(
for n, p in self.named_parameters()
if n.startswith("model.backbone") and p.requires_grad
],
"lr": lr_backbone,
"lr": cfg.training.lr_backbone,
},
]
optimizer = torch.optim.AdamW(optimizer_params_dicts, lr=lr, weight_decay=weight_decay)
optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=cfg.training.lr, weight_decay=cfg.training.weight_decay
)
lr_scheduler = None
return optimizer, lr_scheduler

View File

@ -156,33 +156,22 @@ class DiffusionPolicy(
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
def make_optimizer_and_scheduler(self, **kwargs):
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for Diffusion policy"""
lr, adam_betas, adam_eps, adam_weight_decay = (
kwargs["lr"],
kwargs["adam_betas"],
kwargs["adam_eps"],
kwargs["adam_weight_decay"],
)
lr_scheduler_name, lr_warmup_steps, offline_steps = (
kwargs["lr_scheduler"],
kwargs["lr_warmup_steps"],
kwargs["offline_steps"],
)
optimizer = torch.optim.Adam(
self.diffusion.parameters(),
lr,
adam_betas,
adam_eps,
adam_weight_decay,
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
lr_scheduler_name,
cfg.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps,
num_training_steps=offline_steps,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=cfg.training.offline_steps,
)
return optimizer, lr_scheduler

View File

@ -534,10 +534,9 @@ class TDMPCPolicy(
# we update every step and adjust the decay parameter `alpha` accordingly (0.99 -> 0.995)
update_ema_parameters(self.model_target, self.model, self.config.target_model_momentum)
def make_optimizer_and_scheduler(self, **kwargs):
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for TD-MPC"""
lr = kwargs["lr"]
optimizer = torch.optim.Adam(self.parameters(), lr)
optimizer = torch.optim.Adam(self.parameters(), cfg.training.lr)
lr_scheduler = None
return optimizer, lr_scheduler

View File

@ -152,6 +152,12 @@ class VQBeTPolicy(
return loss_dict
def make_optimizer_and_scheduler(self, cfg):
"""Create the optimizer and learning rate scheduler for VQ-BeT"""
optimizer = VQBeTOptimizer(self, cfg)
scheduler = VQBeTScheduler(optimizer, cfg)
return optimizer, scheduler
class SpatialSoftmax(nn.Module):
"""

View File

@ -281,7 +281,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
assert isinstance(policy, nn.Module)
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = policy.make_optimizer_and_scheduler(**cfg.training)
optimizer, lr_scheduler = policy.make_optimizer_and_scheduler(cfg)
grad_scaler = GradScaler(enabled=cfg.use_amp)
step = 0 # number of policy updates (forward + backward + optim)

View File

@ -39,7 +39,7 @@ def get_policy_stats(env_name, policy_name, extra_overrides):
dataset = make_dataset(cfg)
policy = make_policy(cfg, dataset_stats=dataset.stats)
policy.train()
optimizer, _ = policy.make_optimizer_and_scheduler(**cfg.training)
optimizer, _ = policy.make_optimizer_and_scheduler(cfg)
dataloader = torch.utils.data.DataLoader(
dataset,

View File

@ -213,7 +213,7 @@ def test_act_backbone_lr():
dataset = make_dataset(cfg)
policy = make_policy(hydra_cfg=cfg, dataset_stats=dataset.stats)
optimizer, _ = policy.make_optimizer_and_scheduler(**cfg.training)
optimizer, _ = policy.make_optimizer_and_scheduler(cfg)
assert len(optimizer.param_groups) == 2
assert optimizer.param_groups[0]["lr"] == cfg.training.lr
assert optimizer.param_groups[1]["lr"] == cfg.training.lr_backbone