Refactor SACPolicy for improved readability and action dimension handling

- Cleaned up code formatting for better readability, including consistent spacing and removal of unnecessary blank lines.
- Consolidated continuous action dimension calculation to enhance clarity and maintainability.
- Simplified loss return statements in the forward method to improve code structure.
- Ensured grasp critic parameters are included conditionally based on configuration settings.
This commit is contained in:
AdilZouitine 2025-04-01 15:43:29 +00:00 committed by Adil Zouitine
parent c6cd1475a7
commit 077d18b439
2 changed files with 37 additions and 36 deletions

View File

@ -33,7 +33,8 @@ from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.sac.configuration_sac import SACConfig
from lerobot.common.policies.utils import get_device_from_parameters
DISCRETE_DIMENSION_INDEX = -1 # Gripper is always the last dimension
DISCRETE_DIMENSION_INDEX = -1 # Gripper is always the last dimension
class SACPolicy(
PreTrainedPolicy,
@ -50,6 +51,10 @@ class SACPolicy(
config.validate_features()
self.config = config
continuous_action_dim = config.output_features["action"].shape[0]
if config.num_discrete_actions is not None:
continuous_action_dim -= 1
if config.dataset_stats is not None:
input_normalization_params = _convert_normalization_params_to_tensor(config.dataset_stats)
self.normalize_inputs = Normalize(
@ -117,10 +122,7 @@ class SACPolicy(
self.grasp_critic = None
self.grasp_critic_target = None
continuous_action_dim = config.output_features["action"].shape[0]
if config.num_discrete_actions is not None:
continuous_action_dim -= 1
# Create grasp critic
self.grasp_critic = GraspCritic(
encoder=encoder_critic,
@ -142,7 +144,6 @@ class SACPolicy(
self.grasp_critic = torch.compile(self.grasp_critic)
self.grasp_critic_target = torch.compile(self.grasp_critic_target)
self.actor = Policy(
encoder=encoder_actor,
network=MLP(input_dim=encoder_actor.output_dim, **asdict(config.actor_network_kwargs)),
@ -162,11 +163,14 @@ class SACPolicy(
self.temperature = self.log_alpha.exp().item()
def get_optim_params(self) -> dict:
return {
optim_params = {
"actor": self.actor.parameters_to_optimize,
"critic": self.critic_ensemble.parameters_to_optimize,
"temperature": self.log_alpha,
}
if self.config.num_discrete_actions is not None:
optim_params["grasp_critic"] = self.grasp_critic.parameters_to_optimize
return optim_params
def reset(self):
"""Reset the policy"""
@ -262,7 +266,7 @@ class SACPolicy(
done: Tensor = batch["done"]
next_observation_features: Tensor = batch.get("next_observation_feature")
loss_critic = self.compute_loss_critic(
loss_critic = self.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
@ -283,18 +287,21 @@ class SACPolicy(
return {"loss_critic": loss_critic}
if model == "actor":
return {"loss_actor": self.compute_loss_actor(
observations=observations,
observation_features=observation_features,
)}
return {
"loss_actor": self.compute_loss_actor(
observations=observations,
observation_features=observation_features,
)
}
if model == "temperature":
return {"loss_temperature": self.compute_loss_temperature(
observations=observations,
observation_features=observation_features,
)}
return {
"loss_temperature": self.compute_loss_temperature(
observations=observations,
observation_features=observation_features,
)
}
raise ValueError(f"Unknown model type: {model}")
@ -366,7 +373,7 @@ class SACPolicy(
# In the buffer we have the full action space (continuous + discrete)
# We need to split them before concatenating them in the critic forward
actions: Tensor = actions[:, :DISCRETE_DIMENSION_INDEX]
q_preds = self.critic_forward(
observations=observations,
actions=actions,
@ -407,15 +414,13 @@ class SACPolicy(
# For DQN, select actions using online network, evaluate with target network
next_grasp_qs = self.grasp_critic_forward(next_observations, use_target=False)
best_next_grasp_action = torch.argmax(next_grasp_qs, dim=-1)
# Get target Q-values from target network
target_next_grasp_qs = self.grasp_critic_forward(observations=next_observations, use_target=True)
# Use gather to select Q-values for best actions
target_next_grasp_q = torch.gather(
target_next_grasp_qs,
dim=1,
index=best_next_grasp_action.unsqueeze(-1)
target_next_grasp_qs, dim=1, index=best_next_grasp_action.unsqueeze(-1)
).squeeze(-1)
# Compute target Q-value with Bellman equation
@ -423,13 +428,9 @@ class SACPolicy(
# Get predicted Q-values for current observations
predicted_grasp_qs = self.grasp_critic_forward(observations=observations, use_target=False)
# Use gather to select Q-values for taken actions
predicted_grasp_q = torch.gather(
predicted_grasp_qs,
dim=1,
index=actions.unsqueeze(-1)
).squeeze(-1)
predicted_grasp_q = torch.gather(predicted_grasp_qs, dim=1, index=actions.unsqueeze(-1)).squeeze(-1)
# Compute MSE loss between predicted and target Q-values
grasp_critic_loss = F.mse_loss(input=predicted_grasp_q, target=target_grasp_q)
@ -642,7 +643,7 @@ class GraspCritic(nn.Module):
self,
encoder: Optional[nn.Module],
network: nn.Module,
output_dim: int = 3, # TODO (azouitine): rename it number of discret acitons smth like that
output_dim: int = 3, # TODO (azouitine): rename it number of discret acitons smth like that
init_final: Optional[float] = None,
encoder_is_shared: bool = False,
):

View File

@ -394,7 +394,7 @@ def add_actor_information_and_train(
# Use the forward method for critic loss (includes both main critic and grasp critic)
critic_output = policy.forward(forward_batch, model="critic")
# Main critic optimization
loss_critic = critic_output["loss_critic"]
optimizers["critic"].zero_grad()
@ -405,7 +405,7 @@ def add_actor_information_and_train(
optimizers["critic"].step()
# Grasp critic optimization (if available)
if "loss_grasp_critic" in critic_output and hasattr(policy, "grasp_critic"):
if "loss_grasp_critic" in critic_output:
loss_grasp_critic = critic_output["loss_grasp_critic"]
optimizers["grasp_critic"].zero_grad()
loss_grasp_critic.backward()
@ -450,7 +450,7 @@ def add_actor_information_and_train(
# Use the forward method for critic loss (includes both main critic and grasp critic)
critic_output = policy.forward(forward_batch, model="critic")
# Main critic optimization
loss_critic = critic_output["loss_critic"]
optimizers["critic"].zero_grad()
@ -475,7 +475,7 @@ def add_actor_information_and_train(
parameters=policy.grasp_critic.parameters(), max_norm=clip_grad_norm_value
).item()
optimizers["grasp_critic"].step()
# Add grasp critic info to training info
training_infos["loss_grasp_critic"] = loss_grasp_critic.item()
training_infos["grasp_critic_grad_norm"] = grasp_critic_grad_norm
@ -492,7 +492,7 @@ def add_actor_information_and_train(
parameters=policy.actor.parameters_to_optimize, max_norm=clip_grad_norm_value
).item()
optimizers["actor"].step()
# Add actor info to training info
training_infos["loss_actor"] = loss_actor.item()
training_infos["actor_grad_norm"] = actor_grad_norm
@ -506,7 +506,7 @@ def add_actor_information_and_train(
parameters=[policy.log_alpha], max_norm=clip_grad_norm_value
).item()
optimizers["temperature"].step()
# Add temperature info to training info
training_infos["loss_temperature"] = loss_temperature.item()
training_infos["temperature_grad_norm"] = temp_grad_norm
@ -756,7 +756,7 @@ def make_optimizers_and_scheduler(cfg: TrainPipelineConfig, policy: nn.Module):
lr=cfg.policy.actor_lr,
)
optimizer_critic = torch.optim.Adam(params=policy.critic_ensemble.parameters(), lr=cfg.policy.critic_lr)
if cfg.policy.num_discrete_actions is not None:
optimizer_grasp_critic = torch.optim.Adam(
params=policy.grasp_critic.parameters(), lr=policy.critic_lr