grad_clip_norm as arg of update policy
This commit is contained in:
parent
cd76980d50
commit
0a33a414fb
|
@ -24,7 +24,7 @@ from lerobot.common.utils.utils import (
|
|||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
def update_policy(cfg, policy, batch, optimizer, lr_scheduler=None):
|
||||
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
|
||||
start_time = time.time()
|
||||
|
||||
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
|
||||
|
@ -41,7 +41,7 @@ def update_policy(cfg, policy, batch, optimizer, lr_scheduler=None):
|
|||
model = policy.diffusion if hasattr(policy, "diffusion") else policy # TODO: hacky, remove this line
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(),
|
||||
cfg.grad_clip_norm,
|
||||
grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
|
@ -275,8 +275,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
logging.info("make_policy")
|
||||
policy = make_policy(cfg, dataset_stats=offline_dataset.stats)
|
||||
|
||||
# Create optimizer and scheduler
|
||||
# Temporary hack to move optimizer out of policy
|
||||
if isinstance(policy, ActPolicy):
|
||||
if cfg.policy.name == "act":
|
||||
optimizer_params_dicts = [
|
||||
{"params": [p for n, p in policy.named_parameters() if not n.startswith("backbone") and p.requires_grad]},
|
||||
{
|
||||
|
@ -286,7 +287,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
]
|
||||
optimizer = torch.optim.AdamW(optimizer_params_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||
lr_scheduler = None
|
||||
elif isinstance(policy, DiffusionPolicy):
|
||||
elif cfg.policy.name == "diffusion":
|
||||
optimizer = torch.optim.Adam(
|
||||
policy.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
|
||||
)
|
||||
|
@ -362,7 +363,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
for key in batch:
|
||||
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
||||
|
||||
train_info = update_policy(cfg, policy, batch, optimizer, lr_scheduler)
|
||||
train_info = update_policy(policy, batch, optimizer, cfg.grad_clip_norm, lr_scheduler)
|
||||
|
||||
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
||||
if step % cfg.log_freq == 0:
|
||||
|
|
Loading…
Reference in New Issue