Clean logging, Refactor

This commit is contained in:
Cadene 2024-02-29 23:13:06 +00:00
parent cb7b375526
commit 0b9027f05e
9 changed files with 229 additions and 131 deletions

View File

@ -177,6 +177,14 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
transform=transform,
)
@property
def num_samples(self):
return len(self)
@property
def num_episodes(self):
return len(self._storage._storage["episode"].unique())
@property
def data_path_root(self):
if self.streaming:

View File

@ -109,6 +109,14 @@ class SimxarmExperienceReplay(TensorDictReplayBuffer):
transform=transform,
)
@property
def num_samples(self):
return len(self)
@property
def num_episodes(self):
return len(self._storage._storage["episode"].unique())
@property
def data_path_root(self):
if self.streaming:

View File

@ -8,25 +8,6 @@ import pandas as pd
from omegaconf import OmegaConf
from termcolor import colored
CONSOLE_FORMAT = [
("episode", "E", "int"),
("step", "S", "int"),
("avg_sum_reward", "RS", "float"),
("avg_max_reward", "RM", "float"),
("pc_success", "SR", "float"),
("total_time", "T", "time"),
]
AGENT_METRICS = [
"consistency_loss",
"reward_loss",
"value_loss",
"total_loss",
"weighted_loss",
"pi_loss",
"grad_norm",
]
def make_dir(dir_path):
"""Create directory if it does not already exist."""
with contextlib.suppress(OSError):
@ -80,10 +61,11 @@ class Logger:
"""Primary logger object. Logs either locally or using wandb."""
def __init__(self, log_dir, job_name, cfg):
self._log_dir = make_dir(Path(log_dir))
self._log_dir = Path(log_dir)
self._log_dir.mkdir(parents=True, exist_ok=True)
self._job_name = job_name
self._model_dir = make_dir(self._log_dir / "models")
self._buffer_dir = make_dir(self._log_dir / "buffers")
self._model_dir = self._log_dir / "models"
self._buffer_dir = self._log_dir / "buffers"
self._save_model = cfg.save_model
self._save_buffer = cfg.save_buffer
self._group = cfg_to_group(cfg)
@ -121,10 +103,11 @@ class Logger:
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
self._wandb = wandb
def save_model(self, agent, identifier):
def save_model(self, policy, identifier):
if self._save_model:
self._model_dir.mkdir(parents=True, exist_ok=True)
fp = self._model_dir / f"{str(identifier)}.pt"
agent.save(fp)
policy.save(fp)
if self._wandb:
artifact = self._wandb.Artifact(
self._group + "-" + str(self._seed) + "-" + str(identifier),
@ -134,6 +117,7 @@ class Logger:
self._wandb.log_artifact(artifact)
def save_buffer(self, buffer, identifier):
self._buffer_dir.mkdir(parents=True, exist_ok=True)
fp = self._buffer_dir / f"{str(identifier)}.pkl"
buffer.save(fp)
if self._wandb:
@ -153,31 +137,13 @@ class Logger:
self._wandb.finish()
print_run(self._cfg, self._eval[-1][-1])
def _format(self, key, value, ty):
if ty == "int":
return f'{colored(key + ":", "yellow")} {int(value):,}'
elif ty == "float":
return f'{colored(key + ":", "yellow")} {value:.01f}'
elif ty == "time":
value = str(datetime.timedelta(seconds=int(value)))
return f'{colored(key + ":", "yellow")} {value}'
else:
raise f"invalid log format type: {ty}"
def _print(self, d, category):
category = colored(category, "blue" if category == "train" else "green")
pieces = [f" {category:<14}"]
for k, disp_k, ty in CONSOLE_FORMAT:
pieces.append(f"{self._format(disp_k, d.get(k, 0), ty):<26}")
print(" ".join(pieces))
def log(self, d, category="train"):
assert category in {"train", "eval"}
def log_dict(self, d, step, mode="train"):
assert mode in {"train", "eval"}
if self._wandb is not None:
for k, v in d.items():
self._wandb.log({category + "/" + k: v}, step=d["step"])
if category == "eval":
keys = ["step", "avg_sum_reward", "avg_max_reward", "pc_success"]
self._eval.append(np.array([d[key] for key in keys]))
pd.DataFrame(np.array(self._eval)).to_csv(self._log_dir / "eval.log", header=keys, index=None)
self._print(d, category)
self._wandb.log({f"{mode}/{k}": v}, step=step)
def log_video(self, video, step, mode="train"):
assert mode in {"train", "eval"}
wandb_video = self._wandb.Video(video, fps=self.cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)

View File

@ -1,4 +1,5 @@
import copy
import time
import hydra
import torch
@ -110,6 +111,8 @@ class DiffusionPolicy(nn.Module):
return action
def update(self, replay_buffer, step):
start_time = time.time()
self.diffusion.train()
num_slices = self.cfg.batch_size
@ -125,19 +128,31 @@ class DiffusionPolicy(nn.Module):
out = {
"obs": {
"image": batch["observation", "image"].to(self.device),
"agent_pos": batch["observation", "state"].to(self.device),
"image": batch["observation", "image"].to(
self.device, non_blocking=True
),
"agent_pos": batch["observation", "state"].to(
self.device, non_blocking=True
),
},
"action": batch["action"].to(self.device),
"action": batch["action"].to(self.device, non_blocking=True),
}
return out
batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
batch = process_batch(batch, self.cfg.horizon, num_slices)
data_s = time.time() - start_time
loss = self.diffusion.compute_loss(batch)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.diffusion.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.optimizer.step()
self.optimizer.zero_grad()
self.lr_scheduler.step()
@ -145,9 +160,12 @@ class DiffusionPolicy(nn.Module):
if self.ema is not None:
self.ema.step(self.diffusion)
metrics = {
"total_loss": loss.item(),
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.lr_scheduler.get_last_lr()[0],
"data_s": data_s,
"update_s": time.time() - start_time,
}
# TODO(rcadene): remove hardcoding
@ -155,7 +173,7 @@ class DiffusionPolicy(nn.Module):
if step % 168 == 0:
self.global_step += 1
return metrics
return info
def save(self, fp):
torch.save(self.state_dict(), fp)

View File

@ -1,5 +1,6 @@
# ruff: noqa: N806
import time
from copy import deepcopy
import einops
@ -285,6 +286,7 @@ class TDMPC(nn.Module):
def update(self, replay_buffer, step, demo_buffer=None):
"""Main update function. Corresponds to one iteration of the model learning."""
start_time = time.time()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
@ -326,6 +328,14 @@ class TDMPC(nn.Module):
}
reward = batch["next", "reward"]
# TODO(rcadene): add non_blocking=True
# for key in obs:
# obs[key] = obs[key].to(self.device, non_blocking=True)
# next_obses[key] = next_obses[key].to(self.device, non_blocking=True)
# action = action.to(self.device, non_blocking=True)
# reward = reward.to(self.device, non_blocking=True)
# TODO(rcadene): rearrange directly in offline dataset
if reward.ndim == 2:
reward = einops.rearrange(reward, "h t -> h t 1")
@ -399,6 +409,8 @@ class TDMPC(nn.Module):
self.std = h.linear_schedule(self.cfg.std_schedule, step)
self.model.train()
data_s = time.time() - start_time
# Compute targets
with torch.no_grad():
next_z = self.model.encode(next_obses)
@ -482,21 +494,23 @@ class TDMPC(nn.Module):
h.ema(self.model._Qs, self.model_target._Qs, self.cfg.tau)
self.model.eval()
metrics = {
info = {
"consistency_loss": float(consistency_loss.mean().item()),
"reward_loss": float(reward_loss.mean().item()),
"Q_value_loss": float(q_value_loss.mean().item()),
"V_value_loss": float(v_value_loss.mean().item()),
"total_loss": float(total_loss.mean().item()),
"weighted_loss": float(weighted_loss.mean().item()),
"sum_loss": float(total_loss.mean().item()),
"loss": float(weighted_loss.mean().item()),
"grad_norm": float(grad_norm),
"lr": self.cfg.lr,
"data_s": data_s,
"update_s": time.time() - start_time,
}
# for key in ["demo_batch_size", "expectile"]:
# if hasattr(self, key):
metrics["demo_batch_size"] = demo_batch_size
metrics["expectile"] = expectile
metrics.update(value_info)
metrics.update(pi_update_info)
info["demo_batch_size"] = demo_batch_size
info["expectile"] = expectile
info.update(value_info)
info.update(pi_update_info)
self.step[0] = step
return metrics
return info

View File

@ -1,4 +1,6 @@
import logging
import random
from datetime import datetime
import numpy as np
import torch
@ -10,3 +12,34 @@ def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def init_logging():
def custom_format(record):
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
fnameline = f"{record.pathname}:{record.lineno}"
message = f"{record.levelname} {dt} {fnameline[-15:]:>15} {record.msg}"
return message
logging.basicConfig(level=logging.INFO)
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
formatter = logging.Formatter()
formatter.format = custom_format
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logging.getLogger().addHandler(console_handler)
def format_number_KMB(num):
suffixes = ["", "K", "M", "B", "T", "Q"]
divisor = 1000.0
for suffix in suffixes:
if abs(num) < divisor:
return f"{num:.0f}{suffix}"
num /= divisor
return num

View File

@ -59,6 +59,7 @@ policy:
use_ema: true
lr_scheduler: cosine
lr_warmup_steps: 500
grad_clip_norm: 0
noise_scheduler:
# _target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler

View File

@ -1,4 +1,5 @@
import threading
import time
from pathlib import Path
import hydra
@ -29,6 +30,7 @@ def eval_policy(
fps: int = 15,
return_first_video: bool = False,
):
start = time.time()
sum_rewards = []
max_rewards = []
successes = []
@ -84,14 +86,16 @@ def eval_policy(
for thread in threads:
thread.join()
metrics = {
info = {
"avg_sum_reward": np.nanmean(sum_rewards),
"avg_max_reward": np.nanmean(max_rewards),
"pc_success": np.nanmean(successes) * 100,
"eval_s": time.time() - start,
"eval_ep_s": (time.time() - start) / num_episodes,
}
if return_first_video:
return metrics, first_video
return metrics
return info, first_video
return info
@hydra.main(version_base=None, config_name="default", config_path="../configs")

View File

@ -1,3 +1,4 @@
import logging
import time
import hydra
@ -12,7 +13,7 @@ from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import set_seed
from lerobot.common.utils import format_number_KMB, init_logging, set_seed
from lerobot.scripts.eval import eval_policy
@ -34,36 +35,77 @@ def train_notebook(out_dir=None, job_name=None, config_name="default", config_pa
train(cfg, out_dir=out_dir, job_name=job_name)
def log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics.update(common_metrics)
logger.log(metrics, category="train")
def log_train_info(logger, info, step, cfg, offline_buffer, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]
lr = info["lr"]
data_s = info["data_s"]
update_s = info["update_s"]
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = offline_buffer.num_samples / offline_buffer.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / offline_buffer.num_samples
log_items = [
f"step:{format_number_KMB(step)}",
# number of samples seen during training
f"smpl:{format_number_KMB(num_samples)}",
# number of episodes seen during training
f"ep:{format_number_KMB(num_episodes)}",
# number of time all unique samples are seen
f"epch:{num_epochs:.2f}",
f"loss:{loss:.3f}",
f"grdn:{grad_norm:.3f}",
f"lr:{lr:0.1e}",
# in seconds
f"data_s:{data_s:.3f}",
f"updt_s:{update_s:.3f}",
]
logging.info(" ".join(log_items))
info["step"] = step
info["num_samples"] = num_samples
info["num_episodes"] = num_episodes
info["num_epochs"] = num_epochs
info["is_offline"] = is_offline
logger.log_dict(info, step, mode="train")
def eval_policy_and_log(env, td_policy, step, online_episode_idx, start_time, cfg, logger, is_offline):
common_metrics = {
"episode": online_episode_idx,
"step": step,
"total_time": time.time() - start_time,
"is_offline": float(is_offline),
}
metrics, first_video = eval_policy(
env,
td_policy,
num_episodes=cfg.eval_episodes,
return_first_video=True,
)
metrics.update(common_metrics)
logger.log(metrics, category="eval")
def log_eval_info(logger, info, step, cfg, offline_buffer, is_offline):
eval_s = info["eval_s"]
avg_sum_reward = info["avg_sum_reward"]
pc_success = info["pc_success"]
if cfg.wandb.enable:
eval_video = logger._wandb.Video(first_video, fps=cfg.fps, format="mp4")
logger._wandb.log({"eval_video": eval_video}, step=step)
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
num_samples = (step + 1) * cfg.policy.batch_size
avg_samples_per_ep = offline_buffer.num_samples / offline_buffer.num_episodes
num_episodes = num_samples / avg_samples_per_ep
num_epochs = num_samples / offline_buffer.num_samples
log_items = [
f"step:{format_number_KMB(step)}",
# number of samples seen during training
f"smpl:{format_number_KMB(num_samples)}",
# number of episodes seen during training
f"ep:{format_number_KMB(num_episodes)}",
# number of time all unique samples are seen
f"epch:{num_epochs:.2f}",
f"∑rwrd:{avg_sum_reward:.3f}",
f"success:{pc_success:.1f}%",
f"eval_s:{eval_s:.3f}",
]
logging.info(" ".join(log_items))
info["step"] = step
info["num_samples"] = num_samples
info["num_episodes"] = num_episodes
info["num_epochs"] = num_epochs
info["is_offline"] = is_offline
logger.log_dict(info, step, mode="eval")
def train(cfg: dict, out_dir=None, job_name=None):
@ -72,15 +114,17 @@ def train(cfg: dict, out_dir=None, job_name=None):
if job_name is None:
raise NotImplementedError()
init_logging()
assert torch.cuda.is_available()
torch.backends.cudnn.benchmark = True
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
print("make_env")
logging.info("make_env")
env = make_env(cfg)
print("make_policy")
logging.info("make_policy")
policy = make_policy(cfg)
td_policy = TensorDictModule(
@ -89,12 +133,12 @@ def train(cfg: dict, out_dir=None, job_name=None):
out_keys=["action"],
)
print("make_offline_buffer")
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
# TODO(rcadene): move balanced_sampling, per_alpha, per_beta outside policy
if cfg.policy.balanced_sampling:
print("make online_buffer")
logging.info("make online_buffer")
num_traj_per_batch = cfg.policy.batch_size
online_sampler = PrioritizedSliceSampler(
@ -112,41 +156,41 @@ def train(cfg: dict, out_dir=None, job_name=None):
logger = Logger(out_dir, job_name, cfg)
online_episode_idx = 0
start_time = time.time()
online_ep_idx = 0
step = 0 # number of policy update
is_offline = True
for offline_step in range(cfg.offline_steps):
if offline_step == 0:
print("Start offline training on a fixed dataset")
logging.info("Start offline training on a fixed dataset")
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
metrics = policy.update(offline_buffer, step)
train_info = policy.update(offline_buffer, step)
if step % cfg.log_freq == 0:
log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False)
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
eval_info, first_video = eval_policy(
env,
td_policy,
step,
online_episode_idx,
start_time,
cfg,
logger,
is_offline=True,
num_episodes=cfg.eval_episodes,
return_first_video=True,
)
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
if cfg.wandb.enable:
logger.log_video(first_video, step, mode="eval")
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
logging.info(f"Checkpoint model at step {step}")
logger.save_model(policy, identifier=step)
step += 1
demo_buffer = offline_buffer if cfg.policy.balanced_sampling else None
online_step = 0
is_offline = False
for env_step in range(cfg.online_steps):
if env_step == 0:
print("Start online training by interacting with environment")
logging.info("Start online training by interacting with environment")
# TODO: use SyncDataCollector for that?
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
@ -156,47 +200,49 @@ def train(cfg: dict, out_dir=None, job_name=None):
auto_cast_to_device=True,
)
assert len(rollout) <= cfg.env.episode_length
rollout["episode"] = torch.tensor([online_episode_idx] * len(rollout), dtype=torch.int)
rollout["episode"] = torch.tensor([online_ep_idx] * len(rollout), dtype=torch.int)
online_buffer.extend(rollout)
ep_sum_reward = rollout["next", "reward"].sum()
ep_max_reward = rollout["next", "reward"].max()
ep_success = rollout["next", "success"].any()
metrics = {
rollout_info = {
"avg_sum_reward": np.nanmean(ep_sum_reward),
"avg_max_reward": np.nanmean(ep_max_reward),
"pc_success": np.nanmean(ep_success) * 100,
"online_ep_idx": online_ep_idx,
"ep_length": len(rollout),
}
online_episode_idx += 1
online_ep_idx += 1
for _ in range(cfg.policy.utd):
train_metrics = policy.update(
train_info = policy.update(
online_buffer,
step,
demo_buffer=demo_buffer,
)
metrics.update(train_metrics)
if step % cfg.log_freq == 0:
log_training_metrics(logger, metrics, step, online_episode_idx, start_time, is_offline=False)
train_info.update(rollout_info)
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
if step > 0 and step % cfg.eval_freq == 0:
eval_policy_and_log(
eval_info, first_video = eval_policy(
env,
td_policy,
step,
online_episode_idx,
start_time,
cfg,
logger,
is_offline=False,
num_episodes=cfg.eval_episodes,
return_first_video=True,
)
log_eval_info(L, eval_info, step, cfg, offline_buffer, is_offline)
if cfg.wandb.enable:
logger.log_video(first_video, step, mode="eval")
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
print(f"Checkpoint model at step {step}")
logging.info(f"Checkpoint model at step {step}")
logger.save_model(policy, identifier=step)
step += 1
online_step += 1
if __name__ == "__main__":