backup wip
This commit is contained in:
parent
c7d70a8db9
commit
110ac5ffa1
|
@ -191,7 +191,6 @@ class AlohaEnv(AbstractEnv):
|
|||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([reward], dtype=torch.float32),
|
||||
# success and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
|
|
|
@ -1,18 +1,12 @@
|
|||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
|
||||
from .backbone import build_backbone
|
||||
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
|
||||
|
||||
|
||||
def reparametrize(mu, logvar):
|
||||
std = logvar.div(2).exp()
|
||||
eps = Variable(std.data.new(std.size()).normal_())
|
||||
return mu + std * eps
|
||||
|
||||
|
||||
def get_sinusoid_encoding_table(n_position, d_hid):
|
||||
def get_position_angle_vec(position):
|
||||
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
||||
|
@ -27,7 +21,7 @@ def get_sinusoid_encoding_table(n_position, d_hid):
|
|||
class ActionChunkingTransformer(nn.Module):
|
||||
"""
|
||||
Action Chunking Transformer as per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
|
||||
(https://arxiv.org/abs/2304.13705).
|
||||
(paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
|
||||
|
||||
Note: In this code we use the symbols `vae_encoder`, 'encoder', `decoder`. The meanings are as follows.
|
||||
- The `vae_encoder` is, as per the literature around conditional variational auto-encoders (cVAE), the
|
||||
|
@ -49,7 +43,7 @@ class ActionChunkingTransformer(nn.Module):
|
|||
"""
|
||||
|
||||
def __init__(
|
||||
self, backbones, transformer, vae_encoder, state_dim, action_dim, horizon, camera_names, vae
|
||||
self, backbones, transformer, vae_encoder, state_dim, action_dim, horizon, camera_names, use_vae
|
||||
):
|
||||
"""Initializes the model.
|
||||
Parameters:
|
||||
|
@ -63,134 +57,124 @@ class ActionChunkingTransformer(nn.Module):
|
|||
state_dim: Robot positional state dimension.
|
||||
action_dim: Action dimension.
|
||||
horizon: The number of actions to generate in one forward pass.
|
||||
vae: Whether to use the variational objective. TODO(now): Give more details.
|
||||
use_vae: Whether to use the variational objective. TODO(now): Give more details.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.camera_names = camera_names
|
||||
self.transformer = transformer
|
||||
self.vae_encoder = vae_encoder
|
||||
self.vae = vae
|
||||
self.use_vae = use_vae
|
||||
hidden_dim = transformer.d_model
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||
# Positional embedding to be used as input to the latent vae_encoder (if applicable) and for the
|
||||
self.pos_embed = nn.Embedding(horizon, hidden_dim)
|
||||
if backbones is not None:
|
||||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
self.backbones = nn.ModuleList(backbones)
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
else:
|
||||
# input_dim = 14 + 7 # robot_state + env_state
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
# TODO(rcadene): understand what is env_state, and why it needs to be 7
|
||||
self.input_proj_env_state = nn.Linear(state_dim // 2, hidden_dim)
|
||||
self.pos = torch.nn.Embedding(2, hidden_dim)
|
||||
self.backbones = None
|
||||
|
||||
# vae_encoder extra parameters
|
||||
self.latent_dim = 32 # final size of latent z # TODO tune
|
||||
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
||||
self.vae_encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
||||
self.vae_encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
||||
self.latent_proj = nn.Linear(
|
||||
hidden_dim, self.latent_dim * 2
|
||||
) # project hidden state to latent std, var
|
||||
self.register_buffer(
|
||||
"pos_table", get_sinusoid_encoding_table(1 + 1 + horizon, hidden_dim)
|
||||
) # [CLS], qpos, a_seq
|
||||
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
|
||||
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
|
||||
if use_vae:
|
||||
self.cls_embed = nn.Embedding(1, hidden_dim)
|
||||
# Projection layer for joint-space configuration to hidden dimension.
|
||||
self.vae_encoder_robot_state_input_proj = nn.Linear(state_dim, hidden_dim)
|
||||
# Projection layer for action (joint-space target) to hidden dimension.
|
||||
self.vae_encoder_action_input_proj = nn.Linear(state_dim, hidden_dim)
|
||||
# Final size of latent z. TODO(now): Add to hyperparams.
|
||||
self.latent_dim = 32
|
||||
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(hidden_dim, self.latent_dim * 2)
|
||||
# Fixed sinusoidal positional embedding the whole input to the VAE encoder.
|
||||
self.register_buffer(
|
||||
"vae_encoder_pos_enc", get_sinusoid_encoding_table(1 + 1 + horizon, hidden_dim)
|
||||
)
|
||||
|
||||
# decoder extra parameters
|
||||
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
||||
# Transformer encoder input projections. The tokens will be structured like
|
||||
# [latent, robot_state, image_feature_map_pixels].
|
||||
self.backbones = nn.ModuleList(backbones)
|
||||
self.encoder_img_feat_input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
self.encoder_robot_state_input_proj = nn.Linear(state_dim, hidden_dim)
|
||||
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, hidden_dim)
|
||||
# TODO(now): Fix this nonsense. One positional embedding is needed. We should extract the image
|
||||
# feature dimension with a dry run.
|
||||
self.additional_pos_embed = nn.Embedding(
|
||||
2, hidden_dim
|
||||
) # learned position embedding for proprio and latent
|
||||
|
||||
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
||||
# Transformer decoder.
|
||||
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
|
||||
self.decoder_pos_embed = nn.Embedding(horizon, hidden_dim)
|
||||
# Final action regression head on the output of the transformer's decoder.
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
|
||||
def forward(self, robot_state, image, actions=None):
|
||||
"""
|
||||
qpos: batch, qpos_dim
|
||||
image: batch, num_cam, channel, height, width
|
||||
env_state: None
|
||||
actions: batch, seq, action_dim
|
||||
Args:
|
||||
robot_state: (B, J) batch of robot joint configurations.
|
||||
image: (B, N, C, H, W) batch of N camera frames.
|
||||
actions: (B, S, A) batch of actions from the target dataset which must be provided if the
|
||||
VAE is enabled and the model is in training mode.
|
||||
"""
|
||||
is_training = actions is not None # train or val
|
||||
bs, _ = qpos.shape
|
||||
### Obtain latent z from action sequence
|
||||
if self.vae and is_training:
|
||||
# project action sequence to embedding dim, and concat with a CLS token
|
||||
action_embed = self.vae_encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
||||
qpos_embed = self.vae_encoder_joint_proj(qpos) # (bs, hidden_dim)
|
||||
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
||||
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
||||
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
||||
vae_encoder_input = torch.cat(
|
||||
[cls_embed, qpos_embed, action_embed], axis=1
|
||||
) # (bs, seq+1, hidden_dim)
|
||||
vae_encoder_input = vae_encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
||||
# do not mask cls token
|
||||
# cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
||||
# is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
||||
# obtain position embedding
|
||||
pos_embed = self.pos_table.clone().detach()
|
||||
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
||||
# query model
|
||||
if self.use_vae and self.training:
|
||||
assert (
|
||||
actions is not None
|
||||
), "actions must be provided when using the variational objective in training mode."
|
||||
|
||||
batch_size, _ = robot_state.shape
|
||||
|
||||
# Prepare the latent for input to the transformer.
|
||||
if self.use_vae and actions is not None:
|
||||
# Prepare the input to the VAE encoder: [cls, *joint_space_configuration, *action_sequence].
|
||||
cls_embed = einops.repeat(self.cls_embed.weight, "1 d -> b 1 d", b=batch_size) # (B, 1, D)
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(robot_state).unsqueeze(1) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(actions) # (B, S, D)
|
||||
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
|
||||
vae_encoder_input = vae_encoder_input.permute(1, 0, 2) # (S+2, B, D)
|
||||
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
|
||||
# Prepare fixed positional embedding.
|
||||
pos_embed = self.vae_encoder_pos_enc.clone().detach().permute(1, 0, 2) # (S+2, 1, D)
|
||||
# Forward pass through VAE encoder and sample the latent with the reparameterization trick.
|
||||
vae_encoder_output = self.vae_encoder(
|
||||
vae_encoder_input, pos=pos_embed
|
||||
) # , src_key_padding_mask=is_pad)
|
||||
) # , src_key_padding_mask=is_pad) # TODO(now)
|
||||
vae_encoder_output = vae_encoder_output[0] # take cls output only
|
||||
latent_info = self.latent_proj(vae_encoder_output)
|
||||
mu = latent_info[:, : self.latent_dim]
|
||||
logvar = latent_info[:, self.latent_dim :]
|
||||
latent_sample = reparametrize(mu, logvar)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
latent_pdf_params = self.vae_encoder_latent_output_proj(vae_encoder_output)
|
||||
mu = latent_pdf_params[:, : self.latent_dim]
|
||||
logvar = latent_pdf_params[:, self.latent_dim :]
|
||||
# Use reparameterization trick to sample from the latent's PDF.
|
||||
latent_sample = mu + logvar.div(2).exp() * torch.randn_like(mu)
|
||||
else:
|
||||
# When not using the VAE encoder, we set the latent to be all zeros.
|
||||
mu = logvar = None
|
||||
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=robot_state.dtype).to(
|
||||
robot_state.device
|
||||
)
|
||||
|
||||
if self.backbones is not None:
|
||||
# Image observation features and position embeddings
|
||||
all_cam_features = []
|
||||
all_cam_pos = []
|
||||
for cam_id, _ in enumerate(self.camera_names):
|
||||
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
||||
features = features[0] # take the last layer feature
|
||||
pos = pos[0]
|
||||
all_cam_features.append(self.input_proj(features))
|
||||
all_cam_pos.append(pos)
|
||||
# proprioception features
|
||||
proprio_input = self.input_proj_robot_state(qpos)
|
||||
# fold camera dimension into width dimension
|
||||
src = torch.cat(all_cam_features, axis=3)
|
||||
pos = torch.cat(all_cam_pos, axis=3)
|
||||
hs = self.transformer(
|
||||
src,
|
||||
None,
|
||||
self.pos_embed.weight,
|
||||
pos,
|
||||
latent_input,
|
||||
proprio_input,
|
||||
self.additional_pos_embed.weight,
|
||||
)[0]
|
||||
else:
|
||||
qpos = self.input_proj_robot_state(qpos)
|
||||
env_state = self.input_proj_env_state(env_state)
|
||||
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
||||
hs = self.transformer(transformer_input, None, self.pos_embed.weight, self.pos.weight)[0]
|
||||
a_hat = self.action_head(hs)
|
||||
is_pad_hat = self.is_pad_head(hs)
|
||||
return a_hat, is_pad_hat, [mu, logvar]
|
||||
# Prepare all other transformer inputs.
|
||||
# Image observation features and position embeddings.
|
||||
all_cam_features = []
|
||||
all_cam_pos = []
|
||||
for cam_id, _ in enumerate(self.camera_names):
|
||||
# TODO(now): remove the positional embedding from the backbones.
|
||||
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
||||
features = features[0] # take the last layer feature
|
||||
pos = pos[0]
|
||||
all_cam_features.append(self.encoder_img_feat_input_proj(features))
|
||||
all_cam_pos.append(pos)
|
||||
# Concatenate image observation feature maps along the width dimension.
|
||||
transformer_input = torch.cat(all_cam_features, axis=3)
|
||||
# TODO(now): remove the positional embedding from the backbones.
|
||||
pos = torch.cat(all_cam_pos, axis=3)
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(robot_state)
|
||||
latent_embed = self.encoder_latent_input_proj(latent_sample)
|
||||
|
||||
# Run the transformer and project the outputs to the action space.
|
||||
transformer_output = self.transformer(
|
||||
transformer_input,
|
||||
query_embed=self.decoder_pos_embed.weight,
|
||||
pos_embed=pos,
|
||||
latent_input=latent_embed,
|
||||
proprio_input=robot_state_embed,
|
||||
additional_pos_embed=self.additional_pos_embed.weight,
|
||||
)
|
||||
a_hat = self.action_head(transformer_output)
|
||||
|
||||
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
|
||||
if hidden_depth == 0:
|
||||
mods = [nn.Linear(input_dim, output_dim)]
|
||||
else:
|
||||
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
for _ in range(hidden_depth - 1):
|
||||
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
mods.append(nn.Linear(hidden_dim, output_dim))
|
||||
trunk = nn.Sequential(*mods)
|
||||
return trunk
|
||||
return a_hat, [mu, logvar]
|
||||
|
||||
|
||||
def build_vae_encoder(args):
|
||||
|
@ -231,7 +215,7 @@ def build(args):
|
|||
action_dim=args.action_dim,
|
||||
horizon=args.num_queries,
|
||||
camera_names=args.camera_names,
|
||||
vae=args.vae,
|
||||
use_vae=args.vae,
|
||||
)
|
||||
|
||||
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
|
|
@ -224,8 +224,7 @@ class ActionChunkingTransformerPolicy(AbstractPolicy):
|
|||
if is_pad is not None:
|
||||
is_pad = is_pad[:, : self.model.num_queries]
|
||||
|
||||
breakpoint()
|
||||
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
|
||||
a_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
|
||||
|
||||
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
|
||||
l1 = all_l1.mean() if is_pad is None else (all_l1 * ~is_pad.unsqueeze(-1)).mean()
|
||||
|
@ -240,5 +239,5 @@ class ActionChunkingTransformerPolicy(AbstractPolicy):
|
|||
loss_dict["loss"] = loss_dict["l1"]
|
||||
return loss_dict
|
||||
else:
|
||||
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
action, _ = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
return action
|
||||
|
|
|
@ -26,10 +26,8 @@ class Transformer(nn.Module):
|
|||
dropout=0.1,
|
||||
activation="relu",
|
||||
normalize_before=False,
|
||||
return_intermediate_dec=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
|
@ -40,9 +38,7 @@ class Transformer(nn.Module):
|
|||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
decoder_norm = nn.LayerNorm(d_model)
|
||||
self.decoder = TransformerDecoder(
|
||||
decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec
|
||||
)
|
||||
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
|
@ -57,7 +53,6 @@ class Transformer(nn.Module):
|
|||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask,
|
||||
query_embed,
|
||||
pos_embed,
|
||||
latent_input=None,
|
||||
|
@ -68,10 +63,10 @@ class Transformer(nn.Module):
|
|||
if len(src.shape) == 4: # has H and W
|
||||
# flatten NxCxHxW to HWxNxC
|
||||
bs, c, h, w = src.shape
|
||||
# Each "pixel" on the feature maps will form a token.
|
||||
src = src.flatten(2).permute(2, 0, 1)
|
||||
pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1)
|
||||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
# mask = mask.flatten(1)
|
||||
|
||||
additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim
|
||||
pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0)
|
||||
|
@ -87,9 +82,9 @@ class Transformer(nn.Module):
|
|||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
|
||||
tgt = torch.zeros_like(query_embed)
|
||||
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
||||
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
|
||||
hs = hs.transpose(1, 2)
|
||||
memory = self.encoder(src, pos=pos_embed)
|
||||
hs = self.decoder(tgt, memory, pos=pos_embed, query_pos=query_embed)
|
||||
hs = hs.transpose(0, 1)
|
||||
return hs
|
||||
|
||||
|
||||
|
@ -103,14 +98,12 @@ class TransformerEncoder(nn.Module):
|
|||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = src
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
|
||||
output = layer(output, pos=pos)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
@ -119,52 +112,33 @@ class TransformerEncoder(nn.Module):
|
|||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
||||
def __init__(self, decoder_layer, num_layers, norm=None):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
self.return_intermediate = return_intermediate
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = tgt
|
||||
|
||||
intermediate = []
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(
|
||||
output,
|
||||
memory,
|
||||
tgt_mask=tgt_mask,
|
||||
memory_mask=memory_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
pos=pos,
|
||||
query_pos=query_pos,
|
||||
)
|
||||
if self.return_intermediate:
|
||||
intermediate.append(self.norm(output))
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
if self.return_intermediate:
|
||||
intermediate.pop()
|
||||
intermediate.append(output)
|
||||
|
||||
if self.return_intermediate:
|
||||
return torch.stack(intermediate)
|
||||
|
||||
return output.unsqueeze(0)
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
|
@ -192,12 +166,10 @@ class TransformerEncoderLayer(nn.Module):
|
|||
def forward_post(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src2 = self.self_attn(q, k, value=src)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
|
@ -208,13 +180,11 @@ class TransformerEncoderLayer(nn.Module):
|
|||
def forward_pre(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src2 = self.self_attn(q, k, value=src2)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
||||
|
@ -224,13 +194,11 @@ class TransformerEncoderLayer(nn.Module):
|
|||
def forward(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_pre(src, pos)
|
||||
return self.forward_post(src, pos)
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
|
@ -262,23 +230,17 @@ class TransformerDecoderLayer(nn.Module):
|
|||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(tgt, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt2 = self.self_attn(q, k, value=tgt)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt = self.norm2(tgt)
|
||||
|
@ -291,24 +253,18 @@ class TransformerDecoderLayer(nn.Module):
|
|||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = self.with_pos_embed(tgt2, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt2 = self.self_attn(q, k, value=tgt2)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt2, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt2 = self.norm3(tgt)
|
||||
|
@ -320,10 +276,6 @@ class TransformerDecoderLayer(nn.Module):
|
|||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
|
@ -331,16 +283,10 @@ class TransformerDecoderLayer(nn.Module):
|
|||
return self.forward_pre(
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask,
|
||||
memory_mask,
|
||||
tgt_key_padding_mask,
|
||||
memory_key_padding_mask,
|
||||
pos,
|
||||
query_pos,
|
||||
)
|
||||
return self.forward_post(
|
||||
tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos
|
||||
)
|
||||
return self.forward_post(tgt, memory, pos, query_pos)
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
|
@ -356,7 +302,6 @@ def build_transformer(args):
|
|||
num_encoder_layers=args.enc_layers,
|
||||
num_decoder_layers=args.dec_layers,
|
||||
normalize_before=args.pre_norm,
|
||||
return_intermediate_dec=True,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ policy:
|
|||
hidden_dim: 512
|
||||
dim_feedforward: 3200
|
||||
enc_layers: 4
|
||||
dec_layers: 7
|
||||
dec_layers: 1
|
||||
nheads: 8
|
||||
#camera_names: [top, front_close, left_pillar, right_pillar]
|
||||
camera_names: [top]
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
import torch
|
||||
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
cfg = init_hydra_config(
|
||||
"/home/alexander/Projects/lerobot/outputs/train/act_aloha_sim_transfer_cube_human/.hydra/config.yaml"
|
||||
)
|
||||
|
||||
policy = make_policy(cfg)
|
||||
|
||||
state_dict = torch.load("/home/alexander/Projects/act/outputs/sim_transfer_cube_human_vae/policy_last.ckpt")
|
||||
|
||||
|
||||
# Replace keys based on what they start with.
|
||||
|
||||
start_replacements = [
|
||||
("model.query_embed.weight", "model.pos_embed.weight"),
|
||||
("model.pos_table", "model.vae_encoder_pos_enc"),
|
||||
("model.pos_embed.weight", "model.decoder_pos_embed.weight"),
|
||||
("model.encoder.", "model.vae_encoder."),
|
||||
("model.encoder_action_proj.", "model.vae_encoder_action_input_proj."),
|
||||
("model.encoder_joint_proj.", "model.vae_encoder_robot_state_input_proj."),
|
||||
("model.latent_proj.", "model.vae_encoder_latent_output_proj."),
|
||||
("model.latent_proj.", "model.vae_encoder_latent_output_proj."),
|
||||
("model.input_proj.", "model.encoder_img_feat_input_proj."),
|
||||
("model.input_proj_robot_state", "model.encoder_robot_state_input_proj"),
|
||||
("model.latent_out_proj.", "model.encoder_latent_input_proj."),
|
||||
]
|
||||
|
||||
for to_replace, replace_with in start_replacements:
|
||||
for k in list(state_dict.keys()):
|
||||
if k.startswith(to_replace):
|
||||
k_ = replace_with + k.removeprefix(to_replace)
|
||||
state_dict[k_] = state_dict[k]
|
||||
del state_dict[k]
|
||||
|
||||
# Remove keys based on what they start with.
|
||||
|
||||
start_removals = [
|
||||
# There is a bug that means the pretrained model doesn't even use the final decoder layers.
|
||||
*[f"model.transformer.decoder.layers.{i}" for i in range(1, 7)],
|
||||
"model.is_pad_head.",
|
||||
]
|
||||
|
||||
for to_remove in start_removals:
|
||||
for k in list(state_dict.keys()):
|
||||
if k.startswith(to_remove):
|
||||
del state_dict[k]
|
||||
|
||||
missing_keys, unexpected_keys = policy.load_state_dict(state_dict, strict=False)
|
||||
|
||||
if len(missing_keys) != 0:
|
||||
print("MISSING KEYS")
|
||||
print(missing_keys)
|
||||
if len(unexpected_keys) != 0:
|
||||
print("UNEXPECTED KEYS")
|
||||
print(unexpected_keys)
|
||||
|
||||
# if len(missing_keys) != 0 or len(unexpected_keys) != 0:
|
||||
# print("Failed due to mismatch in state dicts.")
|
||||
# exit()
|
||||
|
||||
policy.save("/tmp/weights.pth")
|
Loading…
Reference in New Issue