First real commit, simxarm env added with torchrl!

This commit is contained in:
Cadene 2024-01-29 12:49:30 +00:00
parent 0396980450
commit 1144819c29
11 changed files with 437 additions and 1 deletions

View File

@ -1 +1,11 @@
# lerobot
# LeRobot
## Installation
Install dependencies using `conda`:
```
conda env create -f environment.yaml
conda activate lerobot
```

23
environment.yaml Normal file
View File

@ -0,0 +1,23 @@
name: lerobot
dependencies:
- python=3.8.16
- pytorch::pytorch=1.13.1
- pytorch::torchvision=0.14.1
- nvidia::cudatoolkit=11.7
- anaconda::pip
- pip:
- cython==0.29.33
- mujoco==2.3.2
- mujoco-py==2.1.2.14
- termcolor
- omegaconf
- gym==0.21.0
- dm-env==1.6
- pandas
- wandb
- moviepy
- imageio
- gdown
# - -e benchmarks/d4rl
# TODO: verify this works
- git+https://github.com/nicklashansen/simxarm.git@main#egg=simxarm

0
lerobot/__init__.py Normal file
View File

1
lerobot/__version__.py Normal file
View File

@ -0,0 +1 @@
__version__ = "0.0.0"

View File

@ -0,0 +1,2 @@
seed: 1337
log_dir: logs/2024_01_26_train

View File

@ -0,0 +1,21 @@
import os
import zipfile
import gdown
def download():
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
download_path = "data.zip"
gdown.download(url, download_path, quiet=False)
print("Extracting...")
with zipfile.ZipFile(download_path, "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
os.remove(download_path)
if __name__ == "__main__":
download()

71
lerobot/scripts/eval.py Normal file
View File

@ -0,0 +1,71 @@
from pathlib import Path
import hydra
import imageio
import numpy as np
import torch
from termcolor import colored
from ..lib.envs import make_env
from ..lib.utils import set_seed
def eval_agent(
env, agent, num_episodes: int, save_video: bool = False, video_path: Path = None
):
"""Evaluate a trained agent and optionally save a video."""
if save_video:
assert video_path is not None
assert video_path.suffix == ".mp4"
episode_rewards = []
episode_successes = []
episode_lengths = []
for i in range(num_episodes):
obs, done, ep_reward, t = env.reset(), False, 0, 0
ep_success = False
if save_video:
frames = []
while not done:
action = agent.act(obs, t0=t == 0, eval_mode=True, step=step)
obs, reward, done, info = env.step(action.cpu().numpy())
ep_reward += reward
if "success" in info and info["success"]:
ep_success = True
if save_video:
frame = env.render(
mode="rgb_array",
# TODO(rcadene): make height, width, camera_id configurable
height=384,
width=384,
camera_id=0,
)
frames.append(frame)
t += 1
episode_rewards.append(float(ep_reward))
episode_successes.append(float(ep_success))
episode_lengths.append(t)
if save_video:
frames = np.stack(frames).transpose(0, 3, 1, 2)
video_path.parent.mkdir(parents=True, exist_ok=True)
# TODO(rcadene): make fps configurable
imageio.mimsave(video_path, frames, fps=15)
return {
"episode_reward": np.nanmean(episode_rewards),
"episode_success": np.nanmean(episode_successes),
"episode_length": np.nanmean(episode_lengths),
}
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def eval(cfg: dict):
assert torch.cuda.is_available()
set_seed(cfg.seed)
print(colored("Log dir:", "yellow", attrs=["bold"]), cfg.log_dir)
env = make_env(cfg)
eval_metrics = eval_agent(env, agent, num_episodes=10, save_video=True)
if __name__ == "__main__":
eval()

16
lerobot/scripts/train.py Normal file
View File

@ -0,0 +1,16 @@
import hydra
import torch
from termcolor import colored
from ..lib.utils import set_seed
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train(cfg: dict):
assert torch.cuda.is_available()
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), cfg.log_dir)
if __name__ == "__main__":
train()

View File

@ -0,0 +1,80 @@
import pickle
from pathlib import Path
import imageio
import simxarm
if __name__ == "__main__":
task = "lift"
dataset_dir = Path(f"data/xarm_{task}_medium")
dataset_path = dataset_dir / f"buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
required_keys = [
"observations",
"next_observations",
"actions",
"rewards",
"dones",
"masks",
]
for k in required_keys:
if k not in dataset_dict and k[:-1] in dataset_dict:
dataset_dict[k] = dataset_dict.pop(k[:-1])
out_dir = Path("tmp/2023_01_26_xarm_lift_medium")
out_dir.mkdir(parents=True, exist_ok=True)
frames = dataset_dict["observations"]["rgb"][:100]
frames = frames.transpose(0, 2, 3, 1)
imageio.mimsave(out_dir / "test.mp4", frames, fps=30)
frames = []
cfg = {}
env = simxarm.make(
task=task,
obs_mode="all",
image_size=84,
action_repeat=cfg.get("action_repeat", 1),
frame_stack=cfg.get("frame_stack", 1),
seed=1,
)
obs = env.reset()
frame = env.render(mode="rgb_array", width=384, height=384)
frames.append(frame)
# def is_first_obs(obs):
# nonlocal first_obs
# print(((dataset_dict["observations"]["state"][i]-obs["state"])**2).sum())
# print(((dataset_dict["observations"]["rgb"][i]-obs["rgb"])**2).sum())
for i in range(25):
action = dataset_dict["actions"][i]
print(f"#{i}")
# print(obs["state"])
# print(dataset_dict["observations"]["state"][i])
print(((dataset_dict["observations"]["state"][i] - obs["state"]) ** 2).sum())
print(((dataset_dict["observations"]["rgb"][i] - obs["rgb"]) ** 2).sum())
obs, reward, done, info = env.step(action)
frame = env.render(mode="rgb_array", width=384, height=384)
frames.append(frame)
print(reward)
print(dataset_dict["rewards"][i])
print(done)
print(dataset_dict["dones"][i])
if dataset_dict["dones"][i]:
obs = env.reset()
frame = env.render(mode="rgb_array", width=384, height=384)
frames.append(frame)
# imageio.mimsave(out_dir / 'test_rollout.mp4', frames, fps=60)

159
setup.py Normal file
View File

@ -0,0 +1,159 @@
"""A setuptools based setup module.
See:
https://packaging.python.org/en/latest/distributing.html
https://github.com/pypa/sampleproject
"""
# To use a consistent encoding
from codecs import open
from os import path
# Always prefer setuptools over distutils
from setuptools import find_packages, setup
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, "README.md"), encoding="utf-8") as f:
long_description = f.read()
# Arguments marked as "Required" below must be included for upload to PyPI.
# Fields marked as "Optional" may be commented out.
# https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package/16084844#16084844
exec(open(path.join(here, "lerobot", "__version__.py")).read())
setup(
# This is the name of your project. The first time you publish this
# package, this name will be registered for you. It will determine how
# users can install this project, e.g.:
#
# $ pip install sampleproject
#
# And where it will live on PyPI: https://pypi.org/project/sampleproject/
#
# There are some restrictions on what makes a valid project name
# specification here:
# https://packaging.python.org/specifications/core-metadata/#name
name="lerobot", # Required
# Versions should comply with PEP 440:
# https://www.python.org/dev/peps/pep-0440/
#
# For a discussion on single-sourcing the version across setup.py and the
# project code, see
# https://packaging.python.org/en/latest/single_source_version.html
version=__version__, # noqa: F821 # Required
# This is a one-line description or tagline of what your project does. This
# corresponds to the "Summary" metadata field:
# https://packaging.python.org/specifications/core-metadata/#summary
description="Le robot is learning", # Required
# This is an optional longer description of your project that represents
# the body of text which users will see when they visit PyPI.
#
# Often, this is the same as your README, so you can just read it in from
# that file directly (as we have already done above)
#
# This field corresponds to the "Description" metadata field:
# https://packaging.python.org/specifications/core-metadata/#description-optional
long_description=long_description, # Optional
# This should be a valid link to your project's main homepage.
#
# This field corresponds to the "Home-Page" metadata field:
# https://packaging.python.org/specifications/core-metadata/#home-page-optional
url="https://github.com/cadene/lerobot", # Optional
# This should be your name or the name of the organization which owns the
# project.
author="Remi Cadene", # Optional
# This should be a valid email address corresponding to the author listed
# above.
author_email="re.cadene@gmail.com", # Optional
# Classifiers help users find your project by categorizing it.
#
# For a list of valid classifiers, see
# https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[ # Optional
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
"Development Status :: 3 - Alpha",
# Indicate who your project is intended for
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
# Pick your license as you wish
"License :: OSI Approved :: MIT License",
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
"Programming Language :: Python :: 3.7",
],
# This field adds keywords for your project which will appear on the
# project page. What does your project relate to?
#
# Note that this is a string of words separated by whitespace, not a list.
keywords="pytorch framework bootstrap deep learning scaffolding", # Optional
# You can just specify package directories manually here if your project is
# simple. Or you can use find_packages().
#
# Alternatively, if you just want to distribute a single Python file, use
# the `py_modules` argument instead as follows, which will expect a file
# called `my_module.py` to exist:
#
# py_modules=["my_module"],
#
packages=find_packages(
exclude=[
"data",
"logs",
]
),
# This field lists other packages that your project depends on to run.
# Any package you put here will be installed by pip when your project is
# installed, so they must be valid existing projects.
#
# For an analysis of "install_requires" vs pip's requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=[
"torch",
"numpy",
"argparse",
],
# List additional groups of dependencies here (e.g. development
# dependencies). Users will be able to install these using the "extras"
# syntax, for example:
#
# $ pip install sampleproject[dev]
#
# Similar to `install_requires` above, these must be valid existing
# projects.
# extras_require={ # Optional
# 'dev': ['check-manifest'],
# 'test': ['coverage'],
# },
# If there are data files included in your packages that need to be
# installed, specify them here.
#
# If using Python 2.6 or earlier, then these have to be included in
# MANIFEST.in as well.
# package_data={ # Optional
# 'sample': ['package_data.dat'],
# },
include_package_data=True,
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files
#
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
# data_files=[('my_data', ['data/data_file'])], # Optional
# To provide executable scripts, use entry points in preference to the
# "scripts" keyword. Entry points provide cross-platform support and allow
# `pip` to create the appropriate form of executable for the target
# platform.
#
# For example, the following would provide a command called `sample` which
# executes the function `main` from this package when invoked:
# entry_points={ # Optional
# 'console_scripts': [
# 'sample=sample:main',
# ],
# },
)

53
test/test_envs.py Normal file
View File

@ -0,0 +1,53 @@
import pytest
from tensordict import TensorDict
from torchrl.envs.utils import check_env_specs, step_mdp
from lerobot.lib.envs import SimxarmEnv
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
[
("lift", False, False),
("lift", True, False),
("lift", True, True),
("reach", False, False),
("reach", True, False),
("push", False, False),
("push", True, False),
("peg_in_box", False, False),
("peg_in_box", True, False),
],
)
def test_simxarm(task, from_pixels, pixels_only):
env = SimxarmEnv(
task,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=84 if from_pixels else None,
)
check_env_specs(env)
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
td = env.reset()
print("reset tensordict", td)
td = env.rand_step(td)
print("random step tensordict", td)
def simple_rollout(steps=100):
# preallocate:
data = TensorDict({}, [steps])
# reset
_data = env.reset()
for i in range(steps):
_data["action"] = env.action_spec.rand()
_data = env.step(_data)
data[i] = _data
_data = step_mdp(_data, keep_other=True)
return data
print("data from rollout:", simple_rollout(100))