First real commit, simxarm env added with torchrl!
This commit is contained in:
parent
0396980450
commit
1144819c29
12
README.md
12
README.md
|
@ -1 +1,11 @@
|
|||
# lerobot
|
||||
# LeRobot
|
||||
|
||||
## Installation
|
||||
|
||||
Install dependencies using `conda`:
|
||||
|
||||
```
|
||||
conda env create -f environment.yaml
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
name: lerobot
|
||||
dependencies:
|
||||
- python=3.8.16
|
||||
- pytorch::pytorch=1.13.1
|
||||
- pytorch::torchvision=0.14.1
|
||||
- nvidia::cudatoolkit=11.7
|
||||
- anaconda::pip
|
||||
- pip:
|
||||
- cython==0.29.33
|
||||
- mujoco==2.3.2
|
||||
- mujoco-py==2.1.2.14
|
||||
- termcolor
|
||||
- omegaconf
|
||||
- gym==0.21.0
|
||||
- dm-env==1.6
|
||||
- pandas
|
||||
- wandb
|
||||
- moviepy
|
||||
- imageio
|
||||
- gdown
|
||||
# - -e benchmarks/d4rl
|
||||
# TODO: verify this works
|
||||
- git+https://github.com/nicklashansen/simxarm.git@main#egg=simxarm
|
|
@ -0,0 +1 @@
|
|||
__version__ = "0.0.0"
|
|
@ -0,0 +1,2 @@
|
|||
seed: 1337
|
||||
log_dir: logs/2024_01_26_train
|
|
@ -0,0 +1,21 @@
|
|||
import os
|
||||
import zipfile
|
||||
|
||||
import gdown
|
||||
|
||||
|
||||
def download():
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
download_path = "data.zip"
|
||||
gdown.download(url, download_path, quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(download_path, "r") as zip_f:
|
||||
for member in zip_f.namelist():
|
||||
if member.startswith("data/xarm") and member.endswith(".pkl"):
|
||||
print(member)
|
||||
zip_f.extract(member=member)
|
||||
os.remove(download_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
download()
|
|
@ -0,0 +1,71 @@
|
|||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
from termcolor import colored
|
||||
|
||||
from ..lib.envs import make_env
|
||||
from ..lib.utils import set_seed
|
||||
|
||||
|
||||
def eval_agent(
|
||||
env, agent, num_episodes: int, save_video: bool = False, video_path: Path = None
|
||||
):
|
||||
"""Evaluate a trained agent and optionally save a video."""
|
||||
if save_video:
|
||||
assert video_path is not None
|
||||
assert video_path.suffix == ".mp4"
|
||||
episode_rewards = []
|
||||
episode_successes = []
|
||||
episode_lengths = []
|
||||
for i in range(num_episodes):
|
||||
obs, done, ep_reward, t = env.reset(), False, 0, 0
|
||||
ep_success = False
|
||||
if save_video:
|
||||
frames = []
|
||||
while not done:
|
||||
action = agent.act(obs, t0=t == 0, eval_mode=True, step=step)
|
||||
obs, reward, done, info = env.step(action.cpu().numpy())
|
||||
ep_reward += reward
|
||||
if "success" in info and info["success"]:
|
||||
ep_success = True
|
||||
if save_video:
|
||||
frame = env.render(
|
||||
mode="rgb_array",
|
||||
# TODO(rcadene): make height, width, camera_id configurable
|
||||
height=384,
|
||||
width=384,
|
||||
camera_id=0,
|
||||
)
|
||||
frames.append(frame)
|
||||
t += 1
|
||||
episode_rewards.append(float(ep_reward))
|
||||
episode_successes.append(float(ep_success))
|
||||
episode_lengths.append(t)
|
||||
if save_video:
|
||||
frames = np.stack(frames).transpose(0, 3, 1, 2)
|
||||
video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
# TODO(rcadene): make fps configurable
|
||||
imageio.mimsave(video_path, frames, fps=15)
|
||||
return {
|
||||
"episode_reward": np.nanmean(episode_rewards),
|
||||
"episode_success": np.nanmean(episode_successes),
|
||||
"episode_length": np.nanmean(episode_lengths),
|
||||
}
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
def eval(cfg: dict):
|
||||
assert torch.cuda.is_available()
|
||||
set_seed(cfg.seed)
|
||||
print(colored("Log dir:", "yellow", attrs=["bold"]), cfg.log_dir)
|
||||
|
||||
env = make_env(cfg)
|
||||
|
||||
eval_metrics = eval_agent(env, agent, num_episodes=10, save_video=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
eval()
|
|
@ -0,0 +1,16 @@
|
|||
import hydra
|
||||
import torch
|
||||
from termcolor import colored
|
||||
|
||||
from ..lib.utils import set_seed
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
def train(cfg: dict):
|
||||
assert torch.cuda.is_available()
|
||||
set_seed(cfg.seed)
|
||||
print(colored("Work dir:", "yellow", attrs=["bold"]), cfg.log_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
|
@ -0,0 +1,80 @@
|
|||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
import imageio
|
||||
import simxarm
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
task = "lift"
|
||||
dataset_dir = Path(f"data/xarm_{task}_medium")
|
||||
dataset_path = dataset_dir / f"buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
with open(dataset_path, "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
|
||||
required_keys = [
|
||||
"observations",
|
||||
"next_observations",
|
||||
"actions",
|
||||
"rewards",
|
||||
"dones",
|
||||
"masks",
|
||||
]
|
||||
for k in required_keys:
|
||||
if k not in dataset_dict and k[:-1] in dataset_dict:
|
||||
dataset_dict[k] = dataset_dict.pop(k[:-1])
|
||||
|
||||
out_dir = Path("tmp/2023_01_26_xarm_lift_medium")
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
frames = dataset_dict["observations"]["rgb"][:100]
|
||||
frames = frames.transpose(0, 2, 3, 1)
|
||||
imageio.mimsave(out_dir / "test.mp4", frames, fps=30)
|
||||
|
||||
frames = []
|
||||
cfg = {}
|
||||
|
||||
env = simxarm.make(
|
||||
task=task,
|
||||
obs_mode="all",
|
||||
image_size=84,
|
||||
action_repeat=cfg.get("action_repeat", 1),
|
||||
frame_stack=cfg.get("frame_stack", 1),
|
||||
seed=1,
|
||||
)
|
||||
|
||||
obs = env.reset()
|
||||
frame = env.render(mode="rgb_array", width=384, height=384)
|
||||
frames.append(frame)
|
||||
|
||||
# def is_first_obs(obs):
|
||||
# nonlocal first_obs
|
||||
# print(((dataset_dict["observations"]["state"][i]-obs["state"])**2).sum())
|
||||
# print(((dataset_dict["observations"]["rgb"][i]-obs["rgb"])**2).sum())
|
||||
|
||||
for i in range(25):
|
||||
action = dataset_dict["actions"][i]
|
||||
|
||||
print(f"#{i}")
|
||||
# print(obs["state"])
|
||||
# print(dataset_dict["observations"]["state"][i])
|
||||
print(((dataset_dict["observations"]["state"][i] - obs["state"]) ** 2).sum())
|
||||
print(((dataset_dict["observations"]["rgb"][i] - obs["rgb"]) ** 2).sum())
|
||||
|
||||
obs, reward, done, info = env.step(action)
|
||||
frame = env.render(mode="rgb_array", width=384, height=384)
|
||||
frames.append(frame)
|
||||
|
||||
print(reward)
|
||||
print(dataset_dict["rewards"][i])
|
||||
|
||||
print(done)
|
||||
print(dataset_dict["dones"][i])
|
||||
|
||||
if dataset_dict["dones"][i]:
|
||||
obs = env.reset()
|
||||
frame = env.render(mode="rgb_array", width=384, height=384)
|
||||
frames.append(frame)
|
||||
|
||||
# imageio.mimsave(out_dir / 'test_rollout.mp4', frames, fps=60)
|
|
@ -0,0 +1,159 @@
|
|||
"""A setuptools based setup module.
|
||||
|
||||
See:
|
||||
https://packaging.python.org/en/latest/distributing.html
|
||||
https://github.com/pypa/sampleproject
|
||||
"""
|
||||
|
||||
# To use a consistent encoding
|
||||
from codecs import open
|
||||
from os import path
|
||||
|
||||
# Always prefer setuptools over distutils
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
here = path.abspath(path.dirname(__file__))
|
||||
|
||||
# Get the long description from the README file
|
||||
with open(path.join(here, "README.md"), encoding="utf-8") as f:
|
||||
long_description = f.read()
|
||||
|
||||
# Arguments marked as "Required" below must be included for upload to PyPI.
|
||||
# Fields marked as "Optional" may be commented out.
|
||||
|
||||
# https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package/16084844#16084844
|
||||
exec(open(path.join(here, "lerobot", "__version__.py")).read())
|
||||
setup(
|
||||
# This is the name of your project. The first time you publish this
|
||||
# package, this name will be registered for you. It will determine how
|
||||
# users can install this project, e.g.:
|
||||
#
|
||||
# $ pip install sampleproject
|
||||
#
|
||||
# And where it will live on PyPI: https://pypi.org/project/sampleproject/
|
||||
#
|
||||
# There are some restrictions on what makes a valid project name
|
||||
# specification here:
|
||||
# https://packaging.python.org/specifications/core-metadata/#name
|
||||
name="lerobot", # Required
|
||||
# Versions should comply with PEP 440:
|
||||
# https://www.python.org/dev/peps/pep-0440/
|
||||
#
|
||||
# For a discussion on single-sourcing the version across setup.py and the
|
||||
# project code, see
|
||||
# https://packaging.python.org/en/latest/single_source_version.html
|
||||
version=__version__, # noqa: F821 # Required
|
||||
# This is a one-line description or tagline of what your project does. This
|
||||
# corresponds to the "Summary" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#summary
|
||||
description="Le robot is learning", # Required
|
||||
# This is an optional longer description of your project that represents
|
||||
# the body of text which users will see when they visit PyPI.
|
||||
#
|
||||
# Often, this is the same as your README, so you can just read it in from
|
||||
# that file directly (as we have already done above)
|
||||
#
|
||||
# This field corresponds to the "Description" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#description-optional
|
||||
long_description=long_description, # Optional
|
||||
# This should be a valid link to your project's main homepage.
|
||||
#
|
||||
# This field corresponds to the "Home-Page" metadata field:
|
||||
# https://packaging.python.org/specifications/core-metadata/#home-page-optional
|
||||
url="https://github.com/cadene/lerobot", # Optional
|
||||
# This should be your name or the name of the organization which owns the
|
||||
# project.
|
||||
author="Remi Cadene", # Optional
|
||||
# This should be a valid email address corresponding to the author listed
|
||||
# above.
|
||||
author_email="re.cadene@gmail.com", # Optional
|
||||
# Classifiers help users find your project by categorizing it.
|
||||
#
|
||||
# For a list of valid classifiers, see
|
||||
# https://pypi.python.org/pypi?%3Aaction=list_classifiers
|
||||
classifiers=[ # Optional
|
||||
# How mature is this project? Common values are
|
||||
# 3 - Alpha
|
||||
# 4 - Beta
|
||||
# 5 - Production/Stable
|
||||
"Development Status :: 3 - Alpha",
|
||||
# Indicate who your project is intended for
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
# Pick your license as you wish
|
||||
"License :: OSI Approved :: MIT License",
|
||||
# Specify the Python versions you support here. In particular, ensure
|
||||
# that you indicate whether you support Python 2, Python 3 or both.
|
||||
"Programming Language :: Python :: 3.7",
|
||||
],
|
||||
# This field adds keywords for your project which will appear on the
|
||||
# project page. What does your project relate to?
|
||||
#
|
||||
# Note that this is a string of words separated by whitespace, not a list.
|
||||
keywords="pytorch framework bootstrap deep learning scaffolding", # Optional
|
||||
# You can just specify package directories manually here if your project is
|
||||
# simple. Or you can use find_packages().
|
||||
#
|
||||
# Alternatively, if you just want to distribute a single Python file, use
|
||||
# the `py_modules` argument instead as follows, which will expect a file
|
||||
# called `my_module.py` to exist:
|
||||
#
|
||||
# py_modules=["my_module"],
|
||||
#
|
||||
packages=find_packages(
|
||||
exclude=[
|
||||
"data",
|
||||
"logs",
|
||||
]
|
||||
),
|
||||
# This field lists other packages that your project depends on to run.
|
||||
# Any package you put here will be installed by pip when your project is
|
||||
# installed, so they must be valid existing projects.
|
||||
#
|
||||
# For an analysis of "install_requires" vs pip's requirements files see:
|
||||
# https://packaging.python.org/en/latest/requirements.html
|
||||
install_requires=[
|
||||
"torch",
|
||||
"numpy",
|
||||
"argparse",
|
||||
],
|
||||
# List additional groups of dependencies here (e.g. development
|
||||
# dependencies). Users will be able to install these using the "extras"
|
||||
# syntax, for example:
|
||||
#
|
||||
# $ pip install sampleproject[dev]
|
||||
#
|
||||
# Similar to `install_requires` above, these must be valid existing
|
||||
# projects.
|
||||
# extras_require={ # Optional
|
||||
# 'dev': ['check-manifest'],
|
||||
# 'test': ['coverage'],
|
||||
# },
|
||||
# If there are data files included in your packages that need to be
|
||||
# installed, specify them here.
|
||||
#
|
||||
# If using Python 2.6 or earlier, then these have to be included in
|
||||
# MANIFEST.in as well.
|
||||
# package_data={ # Optional
|
||||
# 'sample': ['package_data.dat'],
|
||||
# },
|
||||
include_package_data=True,
|
||||
# Although 'package_data' is the preferred approach, in some case you may
|
||||
# need to place data files outside of your packages. See:
|
||||
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files
|
||||
#
|
||||
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
|
||||
# data_files=[('my_data', ['data/data_file'])], # Optional
|
||||
# To provide executable scripts, use entry points in preference to the
|
||||
# "scripts" keyword. Entry points provide cross-platform support and allow
|
||||
# `pip` to create the appropriate form of executable for the target
|
||||
# platform.
|
||||
#
|
||||
# For example, the following would provide a command called `sample` which
|
||||
# executes the function `main` from this package when invoked:
|
||||
# entry_points={ # Optional
|
||||
# 'console_scripts': [
|
||||
# 'sample=sample:main',
|
||||
# ],
|
||||
# },
|
||||
)
|
|
@ -0,0 +1,53 @@
|
|||
import pytest
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs.utils import check_env_specs, step_mdp
|
||||
|
||||
from lerobot.lib.envs import SimxarmEnv
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"task,from_pixels,pixels_only",
|
||||
[
|
||||
("lift", False, False),
|
||||
("lift", True, False),
|
||||
("lift", True, True),
|
||||
("reach", False, False),
|
||||
("reach", True, False),
|
||||
("push", False, False),
|
||||
("push", True, False),
|
||||
("peg_in_box", False, False),
|
||||
("peg_in_box", True, False),
|
||||
],
|
||||
)
|
||||
def test_simxarm(task, from_pixels, pixels_only):
|
||||
env = SimxarmEnv(
|
||||
task,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=84 if from_pixels else None,
|
||||
)
|
||||
check_env_specs(env)
|
||||
|
||||
print("observation_spec:", env.observation_spec)
|
||||
print("action_spec:", env.action_spec)
|
||||
print("reward_spec:", env.reward_spec)
|
||||
|
||||
td = env.reset()
|
||||
print("reset tensordict", td)
|
||||
|
||||
td = env.rand_step(td)
|
||||
print("random step tensordict", td)
|
||||
|
||||
def simple_rollout(steps=100):
|
||||
# preallocate:
|
||||
data = TensorDict({}, [steps])
|
||||
# reset
|
||||
_data = env.reset()
|
||||
for i in range(steps):
|
||||
_data["action"] = env.action_spec.rand()
|
||||
_data = env.step(_data)
|
||||
data[i] = _data
|
||||
_data = step_mdp(_data, keep_other=True)
|
||||
return data
|
||||
|
||||
print("data from rollout:", simple_rollout(100))
|
Loading…
Reference in New Issue