Merge pull request #53 from alexander-soare/finish_examples
Add examples 2 and 3
This commit is contained in:
commit
11cbf1bea1
22
README.md
22
README.md
|
@ -146,11 +146,7 @@ hydra.run.dir=outputs/visualize_dataset/example
|
|||
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
You can import our environment class, download pretrained policies from the HuggingFace hub, and use our rollout utilities with rendering:
|
||||
```python
|
||||
""" Copy pasted from `examples/2_evaluate_pretrained_policy.py`
|
||||
# TODO
|
||||
```
|
||||
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) to see how you can load a pretrained policy from HuggingFace hub, load up the corresponding environment and model, and run an evaluation.
|
||||
|
||||
Or you can achieve the same result by executing our script from the command line:
|
||||
```bash
|
||||
|
@ -160,7 +156,7 @@ eval_episodes=10 \
|
|||
hydra.run.dir=outputs/eval/example_hub
|
||||
```
|
||||
|
||||
After launching training of your own policy, you can also re-evaluate the checkpoints with:
|
||||
After training your own policy, you can also re-evaluate the checkpoints with:
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
--config PATH/TO/FOLDER/config.yaml \
|
||||
|
@ -173,19 +169,9 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
|
|||
|
||||
### Train your own policy
|
||||
|
||||
You can import our dataset, environment, policy classes, and use our training utilities (if some data is missing, it will be automatically downloaded from HuggingFace hub):
|
||||
```python
|
||||
""" Copy pasted from `examples/3_train_policy.py`
|
||||
# TODO
|
||||
```
|
||||
You can import our dataset, environment, policy classes, and use our training utilities (if some data is missing, it will be automatically downloaded from HuggingFace hub): check out [example 3](./examples/3_train_policy.py). After you run this, you may want to revisit [example 2](./examples/2_evaluate_pretrained_policy.py) to evaluate your training output!
|
||||
|
||||
Or you can achieve the same result by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/example
|
||||
```
|
||||
|
||||
You can easily train any policy on any environment:
|
||||
In general, you can use our training script to easily train any policy on any environment:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
env=aloha \
|
||||
|
|
|
@ -1 +1,39 @@
|
|||
# TODO
|
||||
"""
|
||||
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
|
||||
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from lerobot.scripts.eval import eval
|
||||
|
||||
# Get a pretrained policy from the hub.
|
||||
hub_id = "lerobot/diffusion_policy_pusht_image"
|
||||
folder = Path(snapshot_download(hub_id))
|
||||
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
|
||||
# folder = Path("outputs/train/example_pusht_diffusion")
|
||||
|
||||
config_path = folder / "config.yaml"
|
||||
weights_path = folder / "model.pt"
|
||||
stats_path = folder / "stats.pth" # normalization stats
|
||||
|
||||
# Override some config parameters to do with evaluation.
|
||||
overrides = [
|
||||
f"policy.pretrained_model_path={weights_path}",
|
||||
"eval_episodes=10",
|
||||
"rollout_batch_size=10",
|
||||
"device=cuda",
|
||||
]
|
||||
|
||||
# Create a Hydra config.
|
||||
cfg = init_hydra_config(config_path, overrides)
|
||||
|
||||
# Evaluate the policy and save the outputs including metrics and videos.
|
||||
eval(
|
||||
cfg,
|
||||
out_dir=f"outputs/eval/example_{cfg.env.name}_{cfg.policy.name}",
|
||||
stats_path=stats_path,
|
||||
)
|
||||
|
|
|
@ -1 +1,55 @@
|
|||
# TODO
|
||||
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
|
||||
|
||||
Once you have trained a model with this script, you can try to evaluate it on
|
||||
examples/2_evaluate_pretrained_policy.py
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from omegaconf import OmegaConf
|
||||
from tqdm import trange
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
output_directory = Path("outputs/train/example_pusht_diffusion")
|
||||
os.makedirs(output_directory, exist_ok=True)
|
||||
|
||||
overrides = [
|
||||
"env=pusht",
|
||||
"policy=diffusion",
|
||||
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
|
||||
"offline_steps=5000",
|
||||
"log_freq=250",
|
||||
"device=cuda",
|
||||
]
|
||||
|
||||
cfg = init_hydra_config("lerobot/configs/default.yaml", overrides)
|
||||
|
||||
policy = DiffusionPolicy(
|
||||
cfg=cfg.policy,
|
||||
cfg_device=cfg.device,
|
||||
cfg_noise_scheduler=cfg.noise_scheduler,
|
||||
cfg_rgb_model=cfg.rgb_model,
|
||||
cfg_obs_encoder=cfg.obs_encoder,
|
||||
cfg_optimizer=cfg.optimizer,
|
||||
cfg_ema=cfg.ema,
|
||||
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
|
||||
**cfg.policy,
|
||||
)
|
||||
policy.train()
|
||||
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
|
||||
for offline_step in trange(cfg.offline_steps):
|
||||
train_info = policy.update(offline_buffer, offline_step)
|
||||
if offline_step % cfg.log_freq == 0:
|
||||
print(train_info)
|
||||
|
||||
# Save the policy, configuration, and normalization stats for later use.
|
||||
policy.save(output_directory / "model.pt")
|
||||
OmegaConf.save(cfg, output_directory / "config.yaml")
|
||||
torch.save(offline_buffer.transform[-1].stats, output_directory / "stats.pth")
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
import logging
|
||||
import os.path as osp
|
||||
import random
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
import torch
|
||||
from omegaconf import DictConfig
|
||||
|
||||
|
||||
def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
|
||||
|
@ -63,3 +67,31 @@ def format_big_number(num):
|
|||
num /= divisor
|
||||
|
||||
return num
|
||||
|
||||
|
||||
def _relative_path_between(path1: Path, path2: Path) -> Path:
|
||||
"""Returns path1 relative to path2."""
|
||||
path1 = path1.absolute()
|
||||
path2 = path2.absolute()
|
||||
try:
|
||||
return path1.relative_to(path2)
|
||||
except ValueError: # most likely because path1 is not a subpath of path2
|
||||
common_parts = Path(osp.commonpath([path1, path2])).parts
|
||||
return Path(
|
||||
"/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
|
||||
)
|
||||
|
||||
|
||||
def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> DictConfig:
|
||||
"""Initialize a Hydra config given only the path to the relevant config file.
|
||||
|
||||
For config resolution, it is assumed that the config file's parent is the Hydra config dir.
|
||||
"""
|
||||
# TODO(alexander-soare): Resolve configs without Hydra initialization.
|
||||
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
||||
# Hydra needs a path relative to this file.
|
||||
hydra.initialize(
|
||||
str(_relative_path_between(Path(config_path).absolute().parent, Path(__file__).absolute().parent))
|
||||
)
|
||||
cfg = hydra.compose(Path(config_path).stem, overrides)
|
||||
return cfg
|
||||
|
|
|
@ -30,14 +30,12 @@ python lerobot/scripts/eval.py --hub-id HUB/ID --revision v1.0 eval_episodes=10
|
|||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os.path as osp
|
||||
import threading
|
||||
import time
|
||||
from datetime import datetime as dt
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -52,7 +50,7 @@ from lerobot.common.envs.factory import make_env
|
|||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import get_safe_torch_device, init_logging, set_global_seed
|
||||
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
|
@ -195,6 +193,7 @@ def eval(cfg: dict, out_dir=None, stats_path=None):
|
|||
log_output_dir(out_dir)
|
||||
|
||||
logging.info("Making transforms.")
|
||||
# TODO(alexander-soare): Completely decouple datasets from evaluation.
|
||||
offline_buffer = make_offline_buffer(cfg, stats_path=stats_path)
|
||||
|
||||
logging.info("Making environment.")
|
||||
|
@ -229,19 +228,6 @@ def eval(cfg: dict, out_dir=None, stats_path=None):
|
|||
logging.info("End of eval")
|
||||
|
||||
|
||||
def _relative_path_between(path1: Path, path2: Path) -> Path:
|
||||
"""Returns path1 relative to path2."""
|
||||
path1 = path1.absolute()
|
||||
path2 = path2.absolute()
|
||||
try:
|
||||
return path1.relative_to(path2)
|
||||
except ValueError: # most likely because path1 is not a subpath of path2
|
||||
common_parts = Path(osp.commonpath([path1, path2])).parts
|
||||
return Path(
|
||||
"/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||
|
@ -259,19 +245,14 @@ if __name__ == "__main__":
|
|||
|
||||
if args.config is not None:
|
||||
# Note: For the config_path, Hydra wants a path relative to this script file.
|
||||
hydra.initialize(
|
||||
config_path=str(
|
||||
_relative_path_between(Path(args.config).absolute().parent, Path(__file__).parent)
|
||||
)
|
||||
)
|
||||
cfg = hydra.compose(Path(args.config).stem, args.overrides)
|
||||
cfg = init_hydra_config(args.config, args.overrides)
|
||||
# TODO(alexander-soare): Save and load stats in trained model directory.
|
||||
stats_path = None
|
||||
elif args.hub_id is not None:
|
||||
folder = Path(snapshot_download(args.hub_id, revision=args.revision))
|
||||
cfg = hydra.initialize(config_path=str(_relative_path_between(folder, Path(__file__).parent)))
|
||||
cfg = hydra.compose("config", args.overrides)
|
||||
cfg.policy.pretrained_model_path = folder / "model.pt"
|
||||
cfg = init_hydra_config(
|
||||
folder / "config.yaml", [f"policy.pretrained_model_path={folder / 'model.pt'}", *args.overrides]
|
||||
)
|
||||
stats_path = folder / "stats.pth"
|
||||
|
||||
eval(
|
||||
|
|
|
@ -2,8 +2,9 @@ import pytest
|
|||
import torch
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
from .utils import DEVICE, init_config
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -18,7 +19,10 @@ from .utils import DEVICE, init_config
|
|||
],
|
||||
)
|
||||
def test_factory(env_name, dataset_id):
|
||||
cfg = init_config(overrides=[f"env={env_name}", f"env.task={dataset_id}", f"device={DEVICE}"])
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[f"env={env_name}", f"env.task={dataset_id}", f"device={DEVICE}"]
|
||||
)
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
for key in offline_buffer.image_keys:
|
||||
img = offline_buffer[0].get(key)
|
||||
|
|
|
@ -4,12 +4,13 @@ import torch
|
|||
from torchrl.envs.utils import check_env_specs, step_mdp
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
|
||||
from lerobot.common.envs.aloha.env import AlohaEnv
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.pusht.env import PushtEnv
|
||||
from lerobot.common.envs.simxarm.env import SimxarmEnv
|
||||
from lerobot.common.envs.aloha.env import AlohaEnv
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
from .utils import DEVICE, init_config
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
def print_spec_rollout(env):
|
||||
|
@ -110,7 +111,10 @@ def test_pusht(from_pixels, pixels_only):
|
|||
],
|
||||
)
|
||||
def test_factory(env_name):
|
||||
cfg = init_config(overrides=[f"env={env_name}", f"device={DEVICE}"])
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[f"env={env_name}", f"device={DEVICE}"],
|
||||
)
|
||||
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
|
||||
|
|
|
@ -1,19 +1,70 @@
|
|||
import pytest
|
||||
from pathlib import Path
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"path",
|
||||
[
|
||||
"examples/1_visualize_dataset.py",
|
||||
"examples/2_evaluate_pretrained_policy.py",
|
||||
"examples/3_train_policy.py",
|
||||
],
|
||||
)
|
||||
def test_example(path):
|
||||
|
||||
with open(path, 'r') as file:
|
||||
def _find_and_replace(text: str, finds: list[str], replaces: list[str]) -> str:
|
||||
for f, r in zip(finds, replaces):
|
||||
assert f in text
|
||||
text = text.replace(f, r)
|
||||
return text
|
||||
|
||||
|
||||
def test_example_1():
|
||||
path = "examples/1_visualize_dataset.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
file_contents = file.read()
|
||||
exec(file_contents)
|
||||
|
||||
if path == "examples/1_visualize_dataset.py":
|
||||
assert Path("outputs/visualize_dataset/example/episode_0.mp4").exists()
|
||||
|
||||
|
||||
def test_examples_3_and_2():
|
||||
"""
|
||||
Train a model with example 3, check the outputs.
|
||||
Evaluate the trained model with example 2, check the outputs.
|
||||
"""
|
||||
|
||||
path = "examples/3_train_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less steps and use CPU.
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
['"offline_steps=5000"', '"device=cuda"'],
|
||||
['"offline_steps=1"', '"device=cpu"'],
|
||||
)
|
||||
|
||||
exec(file_contents)
|
||||
|
||||
for file_name in ["model.pt", "stats.pth", "config.yaml"]:
|
||||
assert Path(f"outputs/train/example_pusht_diffusion/{file_name}").exists()
|
||||
|
||||
path = "examples/2_evaluate_pretrained_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less evals, use CPU, and use the local model.
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
[
|
||||
'"eval_episodes=10"',
|
||||
'"rollout_batch_size=10"',
|
||||
'"device=cuda"',
|
||||
'# folder = Path("outputs/train/example_pusht_diffusion")',
|
||||
'hub_id = "lerobot/diffusion_policy_pusht_image"',
|
||||
"folder = Path(snapshot_download(hub_id)",
|
||||
],
|
||||
[
|
||||
'"eval_episodes=1"',
|
||||
'"rollout_batch_size=1"',
|
||||
'"device=cpu"',
|
||||
'folder = Path("outputs/train/example_pusht_diffusion")',
|
||||
"",
|
||||
"",
|
||||
],
|
||||
)
|
||||
|
||||
assert Path(f"outputs/train/example_pusht_diffusion").exists()
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
from omegaconf import open_dict
|
||||
import pytest
|
||||
from tensordict import TensorDict
|
||||
from tensordict.nn import TensorDictModule
|
||||
|
@ -10,8 +9,8 @@ from lerobot.common.policies.factory import make_policy
|
|||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
|
||||
from .utils import DEVICE, init_config
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,policy_name,extra_overrides",
|
||||
|
@ -34,7 +33,8 @@ def test_concrete_policy(env_name, policy_name, extra_overrides):
|
|||
- Updating the policy.
|
||||
- Using the policy to select actions at inference time.
|
||||
"""
|
||||
cfg = init_config(
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[
|
||||
f"env={env_name}",
|
||||
f"policy={policy_name}",
|
||||
|
|
|
@ -1,13 +1,6 @@
|
|||
import os
|
||||
import hydra
|
||||
from hydra import compose, initialize
|
||||
|
||||
CONFIG_PATH = "../lerobot/configs"
|
||||
# Pass this as the first argument to init_hydra_config.
|
||||
DEFAULT_CONFIG_PATH = "lerobot/configs/default.yaml"
|
||||
|
||||
DEVICE = os.environ.get('LEROBOT_TESTS_DEVICE', "cuda")
|
||||
|
||||
def init_config(config_name="default", overrides=None):
|
||||
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
||||
initialize(config_path=CONFIG_PATH)
|
||||
cfg = compose(config_name=config_name, overrides=overrides)
|
||||
return cfg
|
||||
|
|
Loading…
Reference in New Issue