Optimize training loop, extract config usage
This commit is contained in:
parent
41219fe81e
commit
12f570292c
|
@ -444,6 +444,22 @@ def add_actor_information_and_train(
|
|||
resume_interaction_step if resume_interaction_step is not None else 0
|
||||
)
|
||||
|
||||
# Extract variables from cfg
|
||||
online_step_before_learning = cfg.training.online_step_before_learning
|
||||
utd_ratio = cfg.policy.utd_ratio
|
||||
dataset_repo_id = cfg.dataset_repo_id
|
||||
fps = cfg.fps
|
||||
log_freq = cfg.training.log_freq
|
||||
save_freq = cfg.training.save_freq
|
||||
device = cfg.device
|
||||
storage_device = cfg.training.storage_device
|
||||
policy_update_freq = cfg.training.policy_update_freq
|
||||
policy_parameters_push_frequency = (
|
||||
cfg.actor_learner_config.policy_parameters_push_frequency
|
||||
)
|
||||
save_checkpoint = cfg.training.save_checkpoint
|
||||
online_steps = cfg.training.online_steps
|
||||
|
||||
while True:
|
||||
if shutdown_event is not None and shutdown_event.is_set():
|
||||
logging.info("[LEARNER] Shutdown signal received. Exiting...")
|
||||
|
@ -472,6 +488,169 @@ def add_actor_information_and_train(
|
|||
|
||||
logging.debug("[LEARNER] Received interactions")
|
||||
|
||||
if len(replay_buffer) < online_step_before_learning:
|
||||
continue
|
||||
|
||||
logging.debug("[LEARNER] Starting optimization loop")
|
||||
time_for_one_optimization_step = time.time()
|
||||
for _ in range(utd_ratio):
|
||||
# profiler = cProfile.Profile()
|
||||
# profiler.enable()
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
||||
# profiler.disable()
|
||||
# profiler.dump_stats("sample_buffer.prof")
|
||||
|
||||
if cfg.dataset_repo_id is not None:
|
||||
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
batch = concatenate_batch_transitions(batch, batch_offline)
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
observations = batch["state"]
|
||||
next_observations = batch["next_state"]
|
||||
done = batch["done"]
|
||||
check_nan_in_transition(
|
||||
observations=observations, actions=actions, next_state=next_observations
|
||||
)
|
||||
|
||||
observation_features, next_observation_features = get_observation_features(
|
||||
policy, observations, next_observations
|
||||
)
|
||||
loss_critic = policy.compute_loss_critic(
|
||||
observations=observations,
|
||||
actions=actions,
|
||||
rewards=rewards,
|
||||
next_observations=next_observations,
|
||||
done=done,
|
||||
observation_features=observation_features,
|
||||
next_observation_features=next_observation_features,
|
||||
)
|
||||
optimizers["critic"].zero_grad()
|
||||
loss_critic.backward()
|
||||
optimizers["critic"].step()
|
||||
|
||||
training_infos = {}
|
||||
training_infos["loss_critic"] = loss_critic.item()
|
||||
|
||||
if optimization_step % policy_update_freq == 0:
|
||||
for _ in range(policy_update_freq):
|
||||
loss_actor = policy.compute_loss_actor(
|
||||
observations=observations,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
|
||||
optimizers["actor"].zero_grad()
|
||||
loss_actor.backward()
|
||||
optimizers["actor"].step()
|
||||
|
||||
training_infos["loss_actor"] = loss_actor.item()
|
||||
|
||||
loss_temperature = policy.compute_loss_temperature(
|
||||
observations=observations,
|
||||
observation_features=observation_features,
|
||||
)
|
||||
optimizers["temperature"].zero_grad()
|
||||
loss_temperature.backward()
|
||||
optimizers["temperature"].step()
|
||||
|
||||
training_infos["loss_temperature"] = loss_temperature.item()
|
||||
|
||||
if time.time() - last_time_policy_pushed > policy_parameters_push_frequency:
|
||||
push_actor_policy_to_queue(parameters_queue, policy)
|
||||
last_time_policy_pushed = time.time()
|
||||
|
||||
policy.update_target_networks()
|
||||
if optimization_step % log_freq == 0:
|
||||
training_infos["Optimization step"] = optimization_step
|
||||
logger.log_dict(
|
||||
d=training_infos, mode="train", custom_step_key="Optimization step"
|
||||
)
|
||||
|
||||
time_for_one_optimization_step = time.time() - time_for_one_optimization_step
|
||||
frequency_for_one_optimization_step = 1 / (
|
||||
time_for_one_optimization_step + 1e-9
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"[LEARNER] Optimization frequency loop [Hz]: {frequency_for_one_optimization_step}"
|
||||
)
|
||||
|
||||
logger.log_dict(
|
||||
{
|
||||
"Optimization frequency loop [Hz]": frequency_for_one_optimization_step,
|
||||
"Optimization step": optimization_step,
|
||||
},
|
||||
mode="train",
|
||||
custom_step_key="Optimization step",
|
||||
)
|
||||
|
||||
optimization_step += 1
|
||||
if optimization_step % log_freq == 0:
|
||||
logging.info(f"[LEARNER] Number of optimization step: {optimization_step}")
|
||||
|
||||
if save_checkpoint and (
|
||||
optimization_step % save_freq == 0 or optimization_step == online_steps
|
||||
):
|
||||
logging.info(f"Checkpoint policy after step {optimization_step}")
|
||||
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
|
||||
# needed (choose 6 as a minimum for consistency without being overkill).
|
||||
_num_digits = max(6, len(str(online_steps)))
|
||||
step_identifier = f"{optimization_step:0{_num_digits}d}"
|
||||
interaction_step = (
|
||||
interaction_message["Interaction step"]
|
||||
if interaction_message is not None
|
||||
else 0
|
||||
)
|
||||
logger.save_checkpoint(
|
||||
optimization_step,
|
||||
policy,
|
||||
optimizers,
|
||||
scheduler=None,
|
||||
identifier=step_identifier,
|
||||
interaction_step=interaction_step,
|
||||
)
|
||||
|
||||
# TODO : temporarly save replay buffer here, remove later when on the robot
|
||||
# We want to control this with the keyboard inputs
|
||||
dataset_dir = logger.log_dir / "dataset"
|
||||
if dataset_dir.exists() and dataset_dir.is_dir():
|
||||
shutil.rmtree(
|
||||
dataset_dir,
|
||||
)
|
||||
replay_buffer.to_lerobot_dataset(
|
||||
dataset_repo_id, fps=fps, root=logger.log_dir / "dataset"
|
||||
)
|
||||
|
||||
logging.info("Resume training")
|
||||
|
||||
if shutdown_event is not None and shutdown_event.is_set():
|
||||
logging.info("[LEARNER] Shutdown signal received. Exiting...")
|
||||
break
|
||||
|
||||
logging.debug("[LEARNER] Waiting for transitions")
|
||||
while not transition_queue.empty() and not shutdown_event.is_set():
|
||||
transition_list = transition_queue.get()
|
||||
transition_list = bytes_to_transitions(transition_list)
|
||||
|
||||
for transition in transition_list:
|
||||
transition = move_transition_to_device(transition, device=device)
|
||||
replay_buffer.add(**transition)
|
||||
if transition.get("complementary_info", {}).get("is_intervention"):
|
||||
offline_replay_buffer.add(**transition)
|
||||
logging.debug("[LEARNER] Received transitions")
|
||||
logging.debug("[LEARNER] Waiting for interactions")
|
||||
while not interaction_message_queue.empty() and not shutdown_event.is_set():
|
||||
interaction_message = interaction_message_queue.get()
|
||||
interaction_message = bytes_to_python_object(interaction_message)
|
||||
# If cfg.resume, shift the interaction step with the last checkpointed step in order to not break the logging
|
||||
interaction_message["Interaction step"] += interaction_step_shift
|
||||
logger.log_dict(
|
||||
interaction_message, mode="train", custom_step_key="Interaction step"
|
||||
)
|
||||
|
||||
logging.debug("[LEARNER] Received interactions")
|
||||
|
||||
if len(replay_buffer) < cfg.training.online_step_before_learning:
|
||||
continue
|
||||
|
||||
|
|
Loading…
Reference in New Issue