Add Important sampling, only use replacement, remove beta smoothing

This commit is contained in:
Pepijn 2025-03-14 13:09:05 +01:00
parent 6a8be97bb5
commit 17d12db7c4
3 changed files with 55 additions and 26 deletions

View File

@ -80,7 +80,7 @@ class SumTree:
def initialize_tree(self, priorities: List[float]):
"""
Efficiently initializes the sum tree in O(n).
Initializes the sum tree
"""
# Set leaf values
for i, priority in enumerate(priorities):
@ -132,32 +132,42 @@ class PrioritizedSampler(Sampler[int]):
self,
data_len: int,
alpha: float = 0.6,
beta: float = 0.1,
eps: float = 1e-6,
replacement: bool = True,
num_samples_per_epoch: Optional[int] = None,
beta_start: float = 0.4,
beta_end: float = 1.0,
total_steps: int = 1,
):
"""
Args:
data_len: Total number of samples in the dataset.
alpha: Exponent for priority scaling. Default is 0.6.
beta: Smoothing offset to avoid excluding low-priority samples.
eps: Small constant to avoid zero priorities.
replacement: Whether to sample with replacement.
num_samples_per_epoch: Number of samples per epoch (default is data_len).
"""
self.data_len = data_len
self.alpha = alpha
self.beta = beta
self.eps = eps
self.replacement = replacement
self.num_samples_per_epoch = num_samples_per_epoch or data_len
self.beta_start = beta_start
self.beta_end = beta_end
self.total_steps = total_steps
self._beta = self.beta_start
# Initialize difficulties and sum-tree
self.difficulties = [1.0] * data_len # Default difficulty = 1.0
initial_priorities = [(1.0 + eps) ** alpha + beta] * data_len # Compute initial priorities
self.difficulties = [1.0] * data_len
self.priorities = [0.0] * data_len
initial_priorities = [(1.0 + eps) ** alpha] * data_len
self.sumtree = SumTree(data_len)
self.sumtree.initialize_tree(initial_priorities) # Bulk load in O(n)
self.sumtree.initialize_tree(initial_priorities)
for i, p in enumerate(initial_priorities):
self.priorities[i] = p
def update_beta(self, current_step: int):
frac = min(1.0, current_step / self.total_steps)
self._beta = self.beta_start + (self.beta_end - self.beta_start) * frac
def update_priorities(self, indices: List[int], difficulties: List[float]):
"""
@ -165,7 +175,8 @@ class PrioritizedSampler(Sampler[int]):
"""
for idx, diff in zip(indices, difficulties, strict=False):
self.difficulties[idx] = diff
new_priority = (diff + self.eps) ** self.alpha + self.beta
new_priority = (diff + self.eps) ** self.alpha
self.priorities[idx] = new_priority
self.sumtree.update(idx, new_priority)
def __iter__(self) -> Iterator[int]:
@ -173,19 +184,21 @@ class PrioritizedSampler(Sampler[int]):
Samples indices based on their priority weights.
"""
total_p = self.sumtree.total_priority()
sampled_indices = set() if not self.replacement else None
for _ in range(self.num_samples_per_epoch):
r = random.random() * total_p
idx = self.sumtree.sample(r)
if not self.replacement:
while idx in sampled_indices:
r = random.random() * total_p
idx = self.sumtree.sample(r)
sampled_indices.add(idx)
yield idx
def __len__(self) -> int:
return self.num_samples_per_epoch
def compute_is_weights(self, indices: List[int]) -> torch.Tensor:
w = []
total_p = self.sumtree.total_priority()
for idx in indices:
p = self.priorities[idx] / total_p
w.append((p * self.data_len) ** (-self._beta))
w = torch.tensor(w, dtype=torch.float32)
return w / w.max()

View File

@ -161,7 +161,6 @@ class ACTPolicy(PreTrainedPolicy):
l1_loss = elementwise_l1.mean()
# mean over time+action_dim => per-sample array of shape (B,)
l1_per_sample = elementwise_l1.mean(dim=(1, 2))
if self.config.use_vae:
@ -175,13 +174,13 @@ class ACTPolicy(PreTrainedPolicy):
loss_dict = {
"l1_loss": l1_loss.item(),
"kld_loss": mean_kld.item(),
"per_sample_l1": l1_per_sample, # shape (B,)
"per_sample_l1": l1_per_sample,
}
loss = l1_loss + mean_kld * self.config.kl_weight
else:
loss_dict = {
"l1_loss": l1_loss.item(),
"per_sample_l1": l1_per_sample, # shape (B,)
"per_sample_l1": l1_per_sample,
}
loss = l1_loss

View File

@ -70,6 +70,17 @@ def update_policy(
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
loss, output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
# Apply importance-sampling if available
if "is_weights" in batch and "per_sample_l1" in output_dict:
per_sample_l1 = output_dict["per_sample_l1"]
l1_per_item = per_sample_l1.mean(dim=-1)
w = batch["is_weights"].to(device)
weighted_loss = (l1_per_item * w).mean()
if policy.config.use_vae and "kld_loss" in output_dict:
weighted_loss += output_dict["kld_loss"] * policy.config.kl_weight
loss = weighted_loss
grad_scaler.scale(loss).backward()
# Unscale the gradient of the optimizer's assigned params in-place **prior to gradient clipping**.
@ -180,10 +191,11 @@ def train(cfg: TrainPipelineConfig):
sampler = PrioritizedSampler(
data_len=data_len,
alpha=0.6,
beta=0.1,
eps=1e-6,
replacement=True,
num_samples_per_epoch=data_len,
beta_start=0.4,
beta_end=1.0,
total_steps=cfg.steps,
)
dataloader = torch.utils.data.DataLoader(
@ -221,6 +233,11 @@ def train(cfg: TrainPipelineConfig):
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(device, non_blocking=True)
if "indices" in batch:
sampler.update_beta(step)
is_weights = sampler.compute_is_weights(batch["indices"].cpu().tolist())
batch["is_weights"] = is_weights
train_tracker, output_dict = update_policy(
train_tracker,
policy,
@ -232,11 +249,11 @@ def train(cfg: TrainPipelineConfig):
use_amp=cfg.policy.use_amp,
)
# If we have 'indices' and 'per_sample_l1' then update sampler
# Update sampler
if "indices" in batch and "per_sample_l1" in output_dict:
indices = batch["indices"].detach().cpu().tolist() # shape (B,)
difficulties = output_dict["per_sample_l1"].detach().cpu().tolist() # shape (B,)
sampler.update_priorities(indices, difficulties)
idxs = batch["indices"].cpu().tolist()
diffs = output_dict["per_sample_l1"].detach().cpu().tolist()
sampler.update_priorities(idxs, diffs)
# Note: eval and checkpoint happens *after* the `step`th training update has completed, so we
# increment `step` here.