Rename openx to droid + Improve all (not tested)
This commit is contained in:
parent
7866c1f7d1
commit
1a5c1ef9c7
|
@ -0,0 +1,143 @@
|
|||
# Port DROID 1.0.1 dataset to LeRobotDataset
|
||||
|
||||
## Download
|
||||
|
||||
TODO
|
||||
|
||||
It will take 2 TB in your local disk.
|
||||
|
||||
## Port on a single computer
|
||||
|
||||
First, install tensorflow dataset utilities to read from raw files:
|
||||
```bash
|
||||
pip install tensorflow
|
||||
pip install tensorflow_datasets
|
||||
```
|
||||
|
||||
Then run this script to start porting the dataset:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/port_droid.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--push-to-hub
|
||||
```
|
||||
|
||||
It will take 400GB in your local disk.
|
||||
|
||||
As usual, your LeRobotDataset will be stored in your huggingface/lerobot cache folder.
|
||||
|
||||
WARNING: it will take 7 days for porting the dataset locally and 3 days to upload, so we will need to parallelize over multiple nodes on a slurm cluster.
|
||||
|
||||
NOTE: For development, run this script to start porting a shard:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/port.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--num-shards 2048 \
|
||||
--shard-index 0
|
||||
```
|
||||
|
||||
## Port over SLURM
|
||||
|
||||
### 1. Port one shard per job
|
||||
|
||||
First, install slurm utilities from Hugging Face:
|
||||
```bash
|
||||
pip install datatrove
|
||||
```
|
||||
|
||||
Then run this script to start porting shards of the dataset:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name port_droid \
|
||||
--partition your_partition \
|
||||
--workers 2048 \
|
||||
--cpus-per-task 8 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
||||
|
||||
**Note on how to set your command line arguments**
|
||||
|
||||
Regarding `--partition`, find yours by running:
|
||||
```bash
|
||||
info --format="%R"`
|
||||
```
|
||||
and select the CPU partition if you have one. No GPU needed.
|
||||
|
||||
Regarding `--workers`, it is the number of slurm jobs you will launch in parallel. 2048 is the maximum number, since there is 2048 shards in Droid. This big number will certainly max-out your cluster.
|
||||
|
||||
Regarding `--cpus-per-task` and `--mem-per-cpu`, by default it will use ~16GB of RAM (8*1950M) which is recommended to load the raw frames and 8 CPUs which can be useful to parallelize the encoding of the frames.
|
||||
|
||||
Find the number of CPUs and Memory of the nodes of your partition by running:
|
||||
```bash
|
||||
sinfo -N -p your_partition -h -o "%N cpus=%c mem=%m"
|
||||
```
|
||||
|
||||
**Useful commands to check progress and debug**
|
||||
|
||||
Check if your jobs are running:
|
||||
```bash
|
||||
squeue -u $USER`
|
||||
```
|
||||
|
||||
You should see a list with job indices like `15125385_155` where `15125385` is the job index and `155` is the worker index. The output/print of this worker is written in real time in `/your/logs/job_name/slurm_jobs/15125385_155.out`. For instance, you can inspect the content of this file by running `less /your/logs/job_name/slurm_jobs/15125385_155.out`.
|
||||
|
||||
Check the progression of your jobs by running:
|
||||
```bash
|
||||
jobs_status /your/logs
|
||||
```
|
||||
|
||||
If it's not 100% and no more slurm job is running, it means that some of them failed. Inspect the logs by running:
|
||||
```bash
|
||||
failed_logs /your/logs/job_name
|
||||
```
|
||||
|
||||
If there is an issue in the code, you can fix it in debug mode with `--slurm 0` which allows to set breakpoint:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py --slurm 0 ...
|
||||
```
|
||||
|
||||
And you can relaunch the same command, which will skip the completed jobs:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py --slurm 1 ...
|
||||
```
|
||||
|
||||
Once all jobs are completed, you will have one dataset per shard (e.g. `droid_1.0.1_world_2048_rank_1594`) saved on disk in your `/lerobot/home/dir/your_id` directory. You can find your `/lerobot/home/dir` by running:
|
||||
```bash
|
||||
python -c "from lerobot.common.constants import HF_LEROBOT_HOME;print(HF_LEROBOT_HOME)"
|
||||
```
|
||||
|
||||
|
||||
### 2. Aggregate all shards
|
||||
|
||||
Run this script to start aggregation:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_aggregate_shards.py \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name aggr_droid \
|
||||
--partition your_partition \
|
||||
--workers 2048 \
|
||||
--cpus-per-task 8 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
||||
|
||||
Once all jobs are completed, you will have one dataset your `/lerobot/home/dir/your_id/droid_1.0.1` directory.
|
||||
|
||||
|
||||
### 3. Upload dataset
|
||||
|
||||
Run this script to start uploading:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_upload.py \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name aggr_droid \
|
||||
--partition your_partition \
|
||||
--workers 50 \
|
||||
--cpus-per-task 4 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
|
@ -0,0 +1,410 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.utils.utils import get_elapsed_time_in_days_hours_minutes_seconds
|
||||
|
||||
DROID_SHARDS = 2048
|
||||
DROID_FPS = 15
|
||||
DROID_ROBOT_TYPE = "Franka"
|
||||
|
||||
# Dataset schema slightly adapted from: https://droid-dataset.github.io/droid/the-droid-dataset.html#-dataset-schema
|
||||
DROID_FEATURES = {
|
||||
# true on first step of the episode
|
||||
"is_first": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# true on last step of the episode
|
||||
"is_last": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# true on last step of the episode if it is a terminal step, True for demos
|
||||
"is_terminal": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# language_instruction is also stored as "task" to follow LeRobot standard
|
||||
"language_instruction": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"language_instruction_2": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"language_instruction_3": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"observation.state.gripper_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"observation.state.cartesian_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"observation.state.joint_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (8,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "gripper"],
|
||||
},
|
||||
},
|
||||
# Initially called wrist_image_left
|
||||
"observation.images.wrist_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
# Initially called exterior_image_1_left
|
||||
"observation.images.exterior_1_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
# Initially called exterior_image_2_left
|
||||
"observation.images.exterior_2_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
"action.gripper_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"action.gripper_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"action.cartesian_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"action.cartesian_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"action.joint_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6"],
|
||||
},
|
||||
},
|
||||
"action.joint_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6"],
|
||||
},
|
||||
},
|
||||
# This feature was called "action" in RLDS dataset and consists of [6x joint velocities, 1x gripper position]
|
||||
"action.original": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw", "gripper"],
|
||||
},
|
||||
},
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (8,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "gripper"],
|
||||
},
|
||||
},
|
||||
"discount": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"reward": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# Meta data that are the same for all frames in the episode
|
||||
"task_category": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"building": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"collector_id": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"date": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"camera_extrinsics.wrist_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"camera_extrinsics.exterior_1_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"camera_extrinsics.exterior_2_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"is_episode_successful": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def is_episode_successful(tf_episode_metadata):
|
||||
# Adapted from: https://github.com/droid-dataset/droid_policy_learning/blob/dd1020eb20d981f90b5ff07dc80d80d5c0cb108b/robomimic/utils/rlds_utils.py#L8
|
||||
return "/success/" in tf_episode_metadata["file_path"].numpy().decode()
|
||||
|
||||
|
||||
def generate_lerobot_frames(tf_episode):
|
||||
m = tf_episode["episode_metadata"]
|
||||
frame_meta = {
|
||||
"task_category": m["building"].numpy().decode(),
|
||||
"building": m["building"].numpy().decode(),
|
||||
"collector_id": m["collector_id"].numpy().decode(),
|
||||
"date": m["date"].numpy().decode(),
|
||||
"camera_extrinsics.wrist_left": m["extrinsics_wrist_cam"].numpy(),
|
||||
"camera_extrinsics.exterior_1_left": m["extrinsics_exterior_cam_1"].numpy(),
|
||||
"camera_extrinsics.exterior_2_left": m["extrinsics_exterior_cam_2"].numpy(),
|
||||
"is_episode_successful": np.array([is_episode_successful(m)]),
|
||||
}
|
||||
for f in tf_episode["steps"]:
|
||||
# Dataset schema slightly adapted from: https://droid-dataset.github.io/droid/the-droid-dataset.html#-dataset-schema
|
||||
frame = {
|
||||
"is_first": np.array([f["is_first"].numpy()]),
|
||||
"is_last": np.array([f["is_last"].numpy()]),
|
||||
"is_terminal": np.array([f["is_terminal"].numpy()]),
|
||||
"language_instruction": f["language_instruction"].numpy().decode(),
|
||||
"language_instruction_2": f["language_instruction_2"].numpy().decode(),
|
||||
"language_instruction_3": f["language_instruction_3"].numpy().decode(),
|
||||
"observation.state.gripper_position": f["observation"]["gripper_position"].numpy(),
|
||||
"observation.state.cartesian_position": f["observation"]["cartesian_position"].numpy(),
|
||||
"observation.state.joint_position": f["observation"]["joint_position"].numpy(),
|
||||
"observation.images.wrist_left": f["observation"]["wrist_image_left"].numpy(),
|
||||
"observation.images.exterior_1_left": f["observation"]["exterior_image_1_left"].numpy(),
|
||||
"observation.images.exterior_2_left": f["observation"]["exterior_image_2_left"].numpy(),
|
||||
"action.gripper_position": f["action_dict"]["gripper_position"].numpy(),
|
||||
"action.gripper_velocity": f["action_dict"]["gripper_velocity"].numpy(),
|
||||
"action.cartesian_position": f["action_dict"]["cartesian_position"].numpy(),
|
||||
"action.cartesian_velocity": f["action_dict"]["cartesian_velocity"].numpy(),
|
||||
"action.joint_position": f["action_dict"]["joint_position"].numpy(),
|
||||
"action.joint_velocity": f["action_dict"]["joint_velocity"].numpy(),
|
||||
"discount": np.array([f["discount"].numpy()]),
|
||||
"reward": np.array([f["reward"].numpy()]),
|
||||
"action.original": f["action"].numpy(),
|
||||
}
|
||||
|
||||
# language_instruction is also stored as "task" to follow LeRobot standard
|
||||
frame["task"] = frame["language_instruction"]
|
||||
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
frame["observation.state"] = np.concatenate(
|
||||
[frame["observation.state.joint_position"], frame["observation.state.gripper_position"]]
|
||||
)
|
||||
frame["action"] = np.concatenate([frame["action.joint_position"], frame["action.gripper_position"]])
|
||||
|
||||
# Meta data that are the same for all frames in the episode
|
||||
frame.update(frame_meta)
|
||||
|
||||
# Cast fp64 to fp32
|
||||
for key in frame:
|
||||
if isinstance(frame[key], np.ndarray) and frame[key].dtype == np.float64:
|
||||
frame[key] = frame[key].astype(np.float32)
|
||||
|
||||
yield frame
|
||||
|
||||
|
||||
def port_droid(
|
||||
raw_dir: Path,
|
||||
repo_id: str = None,
|
||||
push_to_hub: bool = False,
|
||||
num_shards: int | None = None,
|
||||
shard_index: int | None = None,
|
||||
):
|
||||
dataset_name = raw_dir.parent.name
|
||||
version = raw_dir.name
|
||||
data_dir = raw_dir.parent.parent
|
||||
|
||||
builder = tfds.builder(f"{dataset_name}/{version}", data_dir=data_dir, version="")
|
||||
|
||||
if num_shards is not None:
|
||||
tfds_num_shards = builder.info.splits["train"].num_shards
|
||||
if tfds_num_shards != DROID_SHARDS:
|
||||
raise ValueError(
|
||||
f"Number of shards of Droid dataset is expected to be {DROID_SHARDS} but is {tfds_num_shards}."
|
||||
)
|
||||
if num_shards != tfds_num_shards:
|
||||
raise ValueError(
|
||||
f"We only shard over the fixed number of shards provided by tensorflow dataset ({tfds_num_shards}), but {num_shards} shards provided instead."
|
||||
)
|
||||
if shard_index >= tfds_num_shards:
|
||||
raise ValueError(
|
||||
f"Shard index is greater than the num of shards ({shard_index} >= {num_shards})."
|
||||
)
|
||||
|
||||
raw_dataset = builder.as_dataset(split=f"train[{shard_index}shard]")
|
||||
else:
|
||||
raw_dataset = builder.as_dataset(split="train")
|
||||
|
||||
lerobot_dataset = LeRobotDataset.create(
|
||||
repo_id=repo_id,
|
||||
robot_type=DROID_ROBOT_TYPE,
|
||||
fps=DROID_FPS,
|
||||
features=DROID_FEATURES,
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
num_episodes = raw_dataset.cardinality().numpy().item()
|
||||
logging.info(f"Number of episodes {num_episodes}")
|
||||
|
||||
for episode_index, episode in enumerate(raw_dataset):
|
||||
logging.info(f"{episode_index} / {num_episodes} episodes processed")
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
d, h, m, s = get_elapsed_time_in_days_hours_minutes_seconds(elapsed_time)
|
||||
logging.info(f"It has been {d} days, {h} hours, {m} minutes, {s:.3f} seconds")
|
||||
|
||||
for frame in generate_lerobot_frames(episode):
|
||||
lerobot_dataset.add_frame(frame)
|
||||
|
||||
lerobot_dataset.save_episode()
|
||||
logging.info("Save_episode")
|
||||
|
||||
if push_to_hub:
|
||||
lerobot_dataset.push_to_hub(
|
||||
# Add openx tag, since it belongs to the openx collection of datasets
|
||||
tags=["openx"],
|
||||
private=False,
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
action="store_true",
|
||||
help="Upload to hub.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-shards",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Number of shards. Can be either None to load the full dataset, or 2048 to load one of the 2048 tensorflow dataset files.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shard-index",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Index of the shard. Can be either None to load the full dataset, or in [0,2047] to load one of the 2048 tensorflow dataset files.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
port_droid(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,287 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import tqdm
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.aggregate import validate_all_metadata
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import write_episode, write_episode_stats, write_info, write_task
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
class AggregateDatasets(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_ids: list[str],
|
||||
aggregated_repo_id: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
self.aggr_repo_id = aggregated_repo_id
|
||||
|
||||
self.create_aggr_dataset()
|
||||
|
||||
def create_aggr_dataset(self):
|
||||
init_logging()
|
||||
|
||||
logging.info("Start aggregate_datasets")
|
||||
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in self.repo_ids]
|
||||
|
||||
fps, robot_type, features = validate_all_metadata(all_metadata)
|
||||
|
||||
# Create resulting dataset folder
|
||||
aggr_meta = LeRobotDatasetMetadata.create(
|
||||
repo_id=self.aggr_repo_id,
|
||||
fps=fps,
|
||||
robot_type=robot_type,
|
||||
features=features,
|
||||
)
|
||||
|
||||
logging.info("Find all tasks")
|
||||
# find all tasks, deduplicate them, create new task indices for each dataset
|
||||
# indexed by dataset index
|
||||
datasets_task_index_to_aggr_task_index = {}
|
||||
aggr_task_index = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Find all tasks")):
|
||||
task_index_to_aggr_task_index = {}
|
||||
|
||||
for task_index, task in meta.tasks.items():
|
||||
if task not in aggr_meta.task_to_task_index:
|
||||
# add the task to aggr tasks mappings
|
||||
aggr_meta.tasks[aggr_task_index] = task
|
||||
aggr_meta.task_to_task_index[task] = aggr_task_index
|
||||
aggr_task_index += 1
|
||||
|
||||
# add task_index anyway
|
||||
task_index_to_aggr_task_index[task_index] = aggr_meta.task_to_task_index[task]
|
||||
|
||||
datasets_task_index_to_aggr_task_index[dataset_index] = task_index_to_aggr_task_index
|
||||
|
||||
logging.info("Prepare copy data and videos")
|
||||
datasets_ep_idx_to_aggr_ep_idx = {}
|
||||
datasets_aggr_episode_index_shift = {}
|
||||
aggr_episode_index_shift = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Prepare copy data and videos")):
|
||||
ep_idx_to_aggr_ep_idx = {}
|
||||
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
ep_idx_to_aggr_ep_idx[episode_index] = aggr_episode_index
|
||||
|
||||
datasets_ep_idx_to_aggr_ep_idx[dataset_index] = ep_idx_to_aggr_ep_idx
|
||||
datasets_aggr_episode_index_shift[dataset_index] = aggr_episode_index_shift
|
||||
|
||||
# populate episodes
|
||||
for episode_index, episode_dict in meta.episodes.items():
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
episode_dict["episode_index"] = aggr_episode_index
|
||||
aggr_meta.episodes[aggr_episode_index] = episode_dict
|
||||
|
||||
# populate episodes_stats
|
||||
for episode_index, episode_stats in meta.episodes_stats.items():
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
aggr_meta.episodes_stats[aggr_episode_index] = episode_stats
|
||||
|
||||
# populate info
|
||||
aggr_meta.info["total_episodes"] += meta.total_episodes
|
||||
aggr_meta.info["total_frames"] += meta.total_frames
|
||||
aggr_meta.info["total_videos"] += len(aggr_meta.video_keys) * meta.total_episodes
|
||||
|
||||
aggr_episode_index_shift += meta.total_episodes
|
||||
|
||||
logging.info("Write meta data")
|
||||
aggr_meta.info["total_tasks"] = len(aggr_meta.tasks)
|
||||
aggr_meta.info["total_chunks"] = aggr_meta.get_episode_chunk(aggr_episode_index_shift - 1)
|
||||
aggr_meta.info["splits"] = {"train": f"0:{aggr_meta.info['total_episodes']}"}
|
||||
|
||||
# create a new episodes jsonl with updated episode_index using write_episode
|
||||
for episode_dict in tqdm.tqdm(aggr_meta.episodes.values(), desc="Write episodes"):
|
||||
write_episode(episode_dict, aggr_meta.root)
|
||||
|
||||
# create a new episode_stats jsonl with updated episode_index using write_episode_stats
|
||||
for episode_index, episode_stats in tqdm.tqdm(
|
||||
aggr_meta.episodes_stats.items(), desc="Write episodes stats"
|
||||
):
|
||||
write_episode_stats(episode_index, episode_stats, aggr_meta.root)
|
||||
|
||||
# create a new task jsonl with updated episode_index using write_task
|
||||
for task_index, task in tqdm.tqdm(aggr_meta.tasks.items(), desc="Write tasks"):
|
||||
write_task(task_index, task, aggr_meta.root)
|
||||
|
||||
write_info(aggr_meta.info, aggr_meta.root)
|
||||
|
||||
self.datasets_task_index_to_aggr_task_index = datasets_task_index_to_aggr_task_index
|
||||
self.datasets_ep_idx_to_aggr_ep_idx = datasets_ep_idx_to_aggr_ep_idx
|
||||
self.datasets_aggr_episode_index_shift = datasets_aggr_episode_index_shift
|
||||
|
||||
logging.info("Meta data done writing!")
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
import logging
|
||||
import shutil
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from lerobot.common.datasets.aggregate import get_update_episode_and_task_func
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
|
||||
aggr_meta = LeRobotDatasetMetadata(self.aggr_repo_id)
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in self.repo_ids]
|
||||
|
||||
if world_size != len(all_metadata):
|
||||
raise ValueError()
|
||||
|
||||
dataset_index = rank
|
||||
meta = all_metadata[dataset_index]
|
||||
aggr_episode_index_shift = self.datasets_aggr_episode_index_shift[dataset_index]
|
||||
|
||||
logging.info("Copy data")
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = self.datasets_ep_idx_to_aggr_ep_idx[dataset_index][episode_index]
|
||||
data_path = meta.root / meta.get_data_file_path(episode_index)
|
||||
aggr_data_path = aggr_meta.root / aggr_meta.get_data_file_path(aggr_episode_index)
|
||||
|
||||
# update episode_index and task_index
|
||||
df = pd.read_parquet(data_path)
|
||||
update_row_func = get_update_episode_and_task_func(
|
||||
aggr_episode_index_shift, self.datasets_task_index_to_aggr_task_index[dataset_index]
|
||||
)
|
||||
df = df.apply(update_row_func, axis=1)
|
||||
|
||||
aggr_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_data_path)
|
||||
|
||||
logging.info("Copy videos")
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
for vid_key in meta.video_keys:
|
||||
video_path = meta.root / meta.get_video_file_path(episode_index, vid_key)
|
||||
aggr_video_path = aggr_meta.root / aggr_meta.get_video_file_path(aggr_episode_index, vid_key)
|
||||
aggr_video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(video_path, aggr_video_path)
|
||||
|
||||
# copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
# subprocess.Popen(copy_command, shell=True)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
def make_aggregate_executor(
|
||||
repo_ids, repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
AggregateDatasets(repo_ids, repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=str,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="port_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
|
||||
repo_ids = [f"{args.repo_id}_world_{DROID_SHARDS}_rank_{rank}" for rank in range(DROID_SHARDS)]
|
||||
aggregate_executor = make_aggregate_executor(repo_ids, **kwargs)
|
||||
aggregate_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,161 @@
|
|||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
|
||||
|
||||
def validate_shard(repo_id):
|
||||
"""Sanity check that ensure meta data can be loaded and all files are present."""
|
||||
meta = LeRobotDatasetMetadata(repo_id)
|
||||
|
||||
if meta.total_episodes == 0:
|
||||
raise ValueError("Number of episodes is 0.")
|
||||
|
||||
for ep_idx in range(meta.total_episodes):
|
||||
data_path = meta.root / meta.get_data_file_path(ep_idx)
|
||||
|
||||
if not data_path.exists():
|
||||
raise ValueError(f"Parquet file is missing in: {data_path}")
|
||||
|
||||
for vid_key in meta.video_keys:
|
||||
vid_path = meta.root / meta.get_video_file_path(ep_idx, vid_key)
|
||||
if not vid_path.exists():
|
||||
raise ValueError(f"Video file is missing in: {vid_path}")
|
||||
|
||||
|
||||
class PortDroidShards(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
raw_dir: Path | str,
|
||||
repo_id: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.raw_dir = Path(raw_dir)
|
||||
self.repo_id = repo_id
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
from datasets.utils.tqdm import disable_progress_bars
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import port_droid
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
disable_progress_bars()
|
||||
|
||||
shard_repo_id = f"{self.repo_id}_world_{world_size}_rank_{rank}"
|
||||
|
||||
port_droid(
|
||||
self.raw_dir,
|
||||
shard_repo_id,
|
||||
push_to_hub=False,
|
||||
num_shards=world_size,
|
||||
shard_index=rank,
|
||||
)
|
||||
|
||||
validate_shard(shard_repo_id)
|
||||
|
||||
|
||||
def make_port_executor(
|
||||
raw_dir, repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
PortDroidShards(raw_dir, repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": 1,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=str,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="port_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
port_executor = make_port_executor(**kwargs)
|
||||
port_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,230 @@
|
|||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
from huggingface_hub import HfApi
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import create_lerobot_dataset_card
|
||||
|
||||
|
||||
class UploadDataset(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
branch: str | None = None,
|
||||
revision: str | None = None,
|
||||
tags: list | None = None,
|
||||
license: str | None = "apache-2.0",
|
||||
private: bool = False,
|
||||
**card_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.branch = branch
|
||||
self.tags = tags
|
||||
self.license = license
|
||||
self.private = private
|
||||
self.card_kwargs = card_kwargs
|
||||
self.revision = revision if revision else CODEBASE_VERSION
|
||||
|
||||
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER", "0") != "1":
|
||||
logging.warning(
|
||||
'HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env '
|
||||
"variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1"
|
||||
)
|
||||
|
||||
self.create_repo()
|
||||
|
||||
def create_repo(self):
|
||||
hub_api = HfApi()
|
||||
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
hub_api.create_repo(
|
||||
repo_id=self.repo_id,
|
||||
private=self.private,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
if self.branch:
|
||||
hub_api.create_branch(
|
||||
repo_id=self.repo_id,
|
||||
branch=self.branch,
|
||||
revision=self.revision,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
|
||||
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=self.branch):
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=self.tags, dataset_info=meta.info, license=self.license, **self.card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=self.branch)
|
||||
|
||||
def list_files_recursively(directory):
|
||||
base_path = Path(directory)
|
||||
return [str(file.relative_to(base_path)) for file in base_path.rglob("*") if file.is_file()]
|
||||
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
self.file_paths = list_files_recursively(meta.root)
|
||||
self.file_paths = sorted(self.file_paths)
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
import logging
|
||||
import random
|
||||
import time
|
||||
from itertools import islice
|
||||
|
||||
from huggingface_hub import CommitOperationAdd, create_commit, preupload_lfs_files
|
||||
from huggingface_hub.utils import HfHubHTTPError
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
BASE_DELAY = 1.0 # noqa: N806
|
||||
MAX_RETRIES = 24 # noqa: N806
|
||||
|
||||
init_logging()
|
||||
|
||||
def chunked(lst, n):
|
||||
it = iter(lst)
|
||||
return [list(islice(it, size)) for size in [len(lst) // n + (i < len(lst) % n) for i in range(n)]]
|
||||
|
||||
chunks = chunked(self.file_paths, world_size)
|
||||
file_paths = chunks[rank]
|
||||
|
||||
if len(file_paths) == 0:
|
||||
raise ValueError(file_paths)
|
||||
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
additions = [
|
||||
CommitOperationAdd(path_in_repo=path, path_or_fileobj=meta.root / path) for path in file_paths
|
||||
]
|
||||
logging.info(f"Uploading {','.join(file_paths)} to the hub...")
|
||||
preupload_lfs_files(
|
||||
repo_id=self.repo_id, repo_type="dataset", additions=additions, revision=self.branch
|
||||
)
|
||||
logging.info(f"Upload of {','.join(file_paths)} to the hub complete!")
|
||||
|
||||
retries = 0
|
||||
while True:
|
||||
try:
|
||||
create_commit(
|
||||
self.repo_id,
|
||||
repo_type="dataset",
|
||||
operations=additions,
|
||||
commit_message=f"DataTrove upload ({len(additions)} files)",
|
||||
revision=self.branch,
|
||||
)
|
||||
break
|
||||
except HfHubHTTPError as e:
|
||||
if "A commit has happened since" in e.server_message:
|
||||
if retries >= MAX_RETRIES:
|
||||
logging.error(f"Failed to create commit after {MAX_RETRIES=}. Giving up.")
|
||||
raise e
|
||||
logging.info("Commit creation race condition issue. Waiting...")
|
||||
time.sleep(BASE_DELAY * 2**retries + random.uniform(0, 2))
|
||||
retries += 1
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def make_upload_executor(
|
||||
repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
UploadDataset(repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=str,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="port_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
upload_executor = make_upload_executor(**kwargs)
|
||||
upload_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,326 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
For all datasets in the RLDS format.
|
||||
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
|
||||
|
||||
NOTE: Install `tensorflow` and `tensorflow_datasets` before running this script.
|
||||
```bash
|
||||
pip install tensorflow
|
||||
pip install tensorflow_datasets
|
||||
```
|
||||
|
||||
Example:
|
||||
```bash
|
||||
python examples/port_datasets/openx_rlds.py \
|
||||
--raw-dir /fsx/mustafa_shukor/droid \
|
||||
--repo-id cadene/droid \
|
||||
--use-videos \
|
||||
--push-to-hub
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
from examples.port_datasets.openx_utils.configs import OXE_DATASET_CONFIGS, StateEncoding
|
||||
from examples.port_datasets.openx_utils.transforms import OXE_STANDARDIZATION_TRANSFORMS
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.utils.utils import get_elapsed_time_in_days_hours_minutes_seconds
|
||||
|
||||
np.set_printoptions(precision=2)
|
||||
|
||||
|
||||
def transform_raw_dataset(episode, dataset_name):
|
||||
traj = next(iter(episode["steps"].batch(episode["steps"].cardinality())))
|
||||
|
||||
if dataset_name in OXE_STANDARDIZATION_TRANSFORMS:
|
||||
traj = OXE_STANDARDIZATION_TRANSFORMS[dataset_name](traj)
|
||||
|
||||
if dataset_name in OXE_DATASET_CONFIGS:
|
||||
state_obs_keys = OXE_DATASET_CONFIGS[dataset_name]["state_obs_keys"]
|
||||
else:
|
||||
state_obs_keys = [None for _ in range(8)]
|
||||
|
||||
proprio = tf.concat(
|
||||
[
|
||||
(
|
||||
tf.zeros((tf.shape(traj["action"])[0], 1), dtype=tf.float32) # padding
|
||||
if key is None
|
||||
else tf.cast(traj["observation"][key], tf.float32)
|
||||
)
|
||||
for key in state_obs_keys
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
|
||||
traj.update(
|
||||
{
|
||||
"proprio": proprio,
|
||||
"task": traj.pop("language_instruction"),
|
||||
"action": tf.cast(traj["action"], tf.float32),
|
||||
}
|
||||
)
|
||||
|
||||
episode["steps"] = traj
|
||||
return episode
|
||||
|
||||
|
||||
def generate_features_from_raw(dataset_name: str, builder: tfds.core.DatasetBuilder, use_videos: bool = True):
|
||||
state_names = [f"motor_{i}" for i in range(8)]
|
||||
if dataset_name in OXE_DATASET_CONFIGS:
|
||||
state_encoding = OXE_DATASET_CONFIGS[dataset_name]["state_encoding"]
|
||||
if state_encoding == StateEncoding.POS_EULER:
|
||||
state_names = ["x", "y", "z", "roll", "pitch", "yaw", "pad", "gripper"]
|
||||
if "libero" in dataset_name:
|
||||
state_names = [
|
||||
"x",
|
||||
"y",
|
||||
"z",
|
||||
"roll",
|
||||
"pitch",
|
||||
"yaw",
|
||||
"gripper",
|
||||
"gripper",
|
||||
] # 2D gripper state
|
||||
elif state_encoding == StateEncoding.POS_QUAT:
|
||||
state_names = ["x", "y", "z", "rx", "ry", "rz", "rw", "gripper"]
|
||||
|
||||
DEFAULT_FEATURES = {
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (8,),
|
||||
"names": {"motors": state_names},
|
||||
},
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {"motors": ["x", "y", "z", "roll", "pitch", "yaw", "gripper"]},
|
||||
},
|
||||
}
|
||||
|
||||
obs = builder.info.features["steps"]["observation"]
|
||||
features = {
|
||||
f"observation.images.{key}": {
|
||||
"dtype": "video" if use_videos else "image",
|
||||
"shape": value.shape,
|
||||
"names": ["height", "width", "rgb"],
|
||||
}
|
||||
for key, value in obs.items()
|
||||
if "depth" not in key and any(x in key for x in ["image", "rgb"])
|
||||
}
|
||||
return {**features, **DEFAULT_FEATURES}
|
||||
|
||||
|
||||
def save_as_lerobot_dataset(
|
||||
dataset_name: str,
|
||||
lerobot_dataset: LeRobotDataset,
|
||||
raw_dataset: tf.data.Dataset,
|
||||
num_shards: int | None = None,
|
||||
shard_index: int | None = None,
|
||||
):
|
||||
start_time = time.time()
|
||||
total_num_episodes = raw_dataset.cardinality().numpy().item()
|
||||
logging.info(f"Total number of episodes {total_num_episodes}")
|
||||
|
||||
if num_shards is not None:
|
||||
sharded_dataset = raw_dataset.shard(num_shards=num_shards, index=shard_index)
|
||||
sharded_num_episodes = sharded_dataset.cardinality().numpy().item()
|
||||
logging.info(f"{sharded_num_episodes=}")
|
||||
num_episodes = sharded_num_episodes
|
||||
iter_ = iter(sharded_dataset)
|
||||
else:
|
||||
num_episodes = total_num_episodes
|
||||
iter_ = iter(raw_dataset)
|
||||
|
||||
if num_episodes <= 0:
|
||||
raise ValueError(f"Number of episodes is {num_episodes}, but needs to be positive.")
|
||||
|
||||
for episode_index in range(num_episodes):
|
||||
logging.info(f"{episode_index} / {num_episodes} episodes processed")
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
d, h, m, s = get_elapsed_time_in_days_hours_minutes_seconds(elapsed_time)
|
||||
logging.info(f"It has been {d} days, {h} hours, {m} minutes, {s:.3f} seconds")
|
||||
|
||||
episode = next(iter_)
|
||||
logging.info("next")
|
||||
episode = transform_raw_dataset(episode, dataset_name)
|
||||
|
||||
traj = episode["steps"]
|
||||
for i in range(traj["action"].shape[0]):
|
||||
image_dict = {
|
||||
f"observation.images.{key}": value[i].numpy()
|
||||
for key, value in traj["observation"].items()
|
||||
if "depth" not in key and any(x in key for x in ["image", "rgb"])
|
||||
}
|
||||
lerobot_dataset.add_frame(
|
||||
{
|
||||
**image_dict,
|
||||
"observation.state": traj["proprio"][i].numpy(),
|
||||
"action": traj["action"][i].numpy(),
|
||||
"task": traj["task"][i].numpy().decode(),
|
||||
}
|
||||
)
|
||||
|
||||
lerobot_dataset.save_episode()
|
||||
logging.info("save_episode")
|
||||
|
||||
|
||||
def create_lerobot_dataset(
|
||||
raw_dir: Path,
|
||||
repo_id: str = None,
|
||||
push_to_hub: bool = False,
|
||||
fps: int = None,
|
||||
robot_type: str = None,
|
||||
use_videos: bool = True,
|
||||
image_writer_process: int = 5,
|
||||
image_writer_threads: int = 10,
|
||||
num_shards: int | None = None,
|
||||
shard_index: int | None = None,
|
||||
):
|
||||
last_part = raw_dir.name
|
||||
if re.match(r"^\d+\.\d+\.\d+$", last_part):
|
||||
version = last_part
|
||||
dataset_name = raw_dir.parent.name
|
||||
data_dir = raw_dir.parent.parent
|
||||
else:
|
||||
version = ""
|
||||
dataset_name = last_part
|
||||
data_dir = raw_dir.parent
|
||||
|
||||
builder = tfds.builder(dataset_name, data_dir=data_dir, version=version)
|
||||
features = generate_features_from_raw(dataset_name, builder, use_videos)
|
||||
|
||||
if num_shards is not None:
|
||||
if num_shards != builder.info.splits["train"].num_shards:
|
||||
raise ValueError()
|
||||
if shard_index >= builder.info.splits["train"].num_shards:
|
||||
raise ValueError()
|
||||
|
||||
raw_dataset = builder.as_dataset(split=f"train[{shard_index}shard]")
|
||||
else:
|
||||
raw_dataset = builder.as_dataset(split="train")
|
||||
|
||||
if fps is None:
|
||||
if dataset_name in OXE_DATASET_CONFIGS:
|
||||
fps = OXE_DATASET_CONFIGS[dataset_name]["control_frequency"]
|
||||
else:
|
||||
fps = 10
|
||||
|
||||
if robot_type is None:
|
||||
if dataset_name in OXE_DATASET_CONFIGS:
|
||||
robot_type = OXE_DATASET_CONFIGS[dataset_name]["robot_type"]
|
||||
robot_type = robot_type.lower().replace(" ", "_").replace("-", "_")
|
||||
else:
|
||||
robot_type = "unknown"
|
||||
|
||||
lerobot_dataset = LeRobotDataset.create(
|
||||
repo_id=repo_id,
|
||||
robot_type=robot_type,
|
||||
fps=fps,
|
||||
use_videos=use_videos,
|
||||
features=features,
|
||||
image_writer_threads=image_writer_threads,
|
||||
image_writer_processes=image_writer_process,
|
||||
)
|
||||
|
||||
save_as_lerobot_dataset(
|
||||
dataset_name,
|
||||
lerobot_dataset,
|
||||
raw_dataset,
|
||||
)
|
||||
|
||||
if push_to_hub:
|
||||
assert repo_id is not None
|
||||
tags = []
|
||||
if dataset_name in OXE_DATASET_CONFIGS:
|
||||
tags.append("openx")
|
||||
lerobot_dataset.push_to_hub(
|
||||
tags=tags,
|
||||
private=False,
|
||||
push_videos=True,
|
||||
license="apache-2.0",
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
action="store_true",
|
||||
help="Upload to hub.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--robot-type",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Robot type of this dataset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Frame rate used to collect videos. Default fps equals to the control frequency of the robot.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-videos",
|
||||
action="store_true",
|
||||
help="Convert each episode of the raw dataset to an mp4 video. This option allows 60 times lower disk space consumption and 25 faster loading time during training.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--image-writer-process",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of processes of image writer for saving images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--image-writer-threads",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of threads per process of image writer for saving images.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# droid_dir = Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene/droid")
|
||||
# if droid_dir.exists():
|
||||
# shutil.rmtree(droid_dir)
|
||||
|
||||
create_lerobot_dataset(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,52 +0,0 @@
|
|||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
|
||||
|
||||
def main():
|
||||
repo_id = "cadene/droid"
|
||||
datetime = "2025-02-22_11-23-54"
|
||||
port_log_dir = Path(f"/fsx/remi_cadene/logs/{datetime}_port_openx_droid")
|
||||
|
||||
compl_dir = port_log_dir / "completions"
|
||||
|
||||
paths = list(compl_dir.glob("*"))
|
||||
total_items = len(paths)
|
||||
|
||||
# Use tqdm with the total parameter
|
||||
wrong_completions = []
|
||||
error_messages = []
|
||||
for i, path in tqdm.tqdm(enumerate(paths), total=total_items):
|
||||
try:
|
||||
rank = path.name.lstrip("0")
|
||||
if rank == "":
|
||||
rank = 0
|
||||
meta = LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_{rank}")
|
||||
last_episode_index = meta.total_episodes - 1
|
||||
last_ep_data_path = meta.root / meta.get_data_file_path(last_episode_index)
|
||||
|
||||
if not last_ep_data_path.exists():
|
||||
raise ValueError(path)
|
||||
|
||||
for vid_key in meta.video_keys:
|
||||
last_ep_vid_path = meta.root / meta.get_video_file_path(last_episode_index, vid_key)
|
||||
if not last_ep_vid_path.exists():
|
||||
raise ValueError(path)
|
||||
|
||||
except Exception as e:
|
||||
error_messages.append(str(e))
|
||||
wrong_completions.append(path)
|
||||
|
||||
for path, error_msg in zip(wrong_completions, error_messages, strict=False):
|
||||
print(path)
|
||||
print(error_msg)
|
||||
print()
|
||||
# path.unlink()
|
||||
|
||||
print(f"Error {len(wrong_completions)} / {total_items}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,310 +0,0 @@
|
|||
import datetime as dt
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
from huggingface_hub import CommitOperationAdd, HfApi, create_commit, preupload_lfs_files
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
from huggingface_hub.utils import HfHubHTTPError
|
||||
|
||||
from lerobot.common.datasets.aggregate import aggregate_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import create_lerobot_dataset_card
|
||||
|
||||
BASE_DELAY = 0.1
|
||||
MAX_RETRIES = 12
|
||||
|
||||
|
||||
class PortOpenXDataset(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
raw_dir: Path | str,
|
||||
repo_id: str = None,
|
||||
image_writer_process: int = 0,
|
||||
image_writer_threads: int = 8,
|
||||
):
|
||||
super().__init__()
|
||||
self.raw_dir = Path(raw_dir)
|
||||
self.repo_id = repo_id
|
||||
self.image_writer_process = image_writer_process
|
||||
self.image_writer_threads = image_writer_threads
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
from datasets.utils.tqdm import disable_progress_bars
|
||||
|
||||
from examples.port_datasets.openx_rlds import create_lerobot_dataset
|
||||
from examples.port_datasets.openx_utils.test import display_slurm_info, display_system_info
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
disable_progress_bars()
|
||||
|
||||
display_system_info()
|
||||
display_slurm_info()
|
||||
|
||||
create_lerobot_dataset(
|
||||
self.raw_dir,
|
||||
f"{self.repo_id}_world_{world_size}_rank_{rank}",
|
||||
image_writer_process=self.image_writer_process,
|
||||
image_writer_threads=self.image_writer_threads,
|
||||
push_to_hub=False,
|
||||
num_shards=world_size,
|
||||
shard_index=rank,
|
||||
)
|
||||
|
||||
|
||||
class AggregateDatasets(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_ids: list[str],
|
||||
aggregated_repo_id: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
self.aggregated_repo_id = aggregated_repo_id
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
aggregate_datasets(self.repo_ids, self.aggregated_repo_id)
|
||||
|
||||
|
||||
class UploadDataset(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
branch: str | None = None,
|
||||
tags: list | None = None,
|
||||
license: str | None = "apache-2.0",
|
||||
private: bool = False,
|
||||
**card_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.branch = branch
|
||||
self.tags = tags
|
||||
self.license = license
|
||||
self.private = private
|
||||
self.card_kwargs = card_kwargs
|
||||
|
||||
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER", "0") != "1":
|
||||
logging.warning(
|
||||
'HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env '
|
||||
"variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1"
|
||||
)
|
||||
|
||||
self._repo_init = False
|
||||
|
||||
def _create_repo(self, hub_api):
|
||||
hub_api.create_repo(
|
||||
repo_id=self.repo_id,
|
||||
private=self.private,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
if self.branch:
|
||||
hub_api.create_branch(
|
||||
repo_id=self.repo_id,
|
||||
branch=self.branch,
|
||||
revision=self.revision,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
|
||||
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=self.branch):
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=self.tags, dataset_info=self.meta.info, license=license, **self.card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=self.branch)
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
|
||||
# TODO: list files, shard files, upload meta data for rank=0
|
||||
filenames = []
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
hub_api = HfApi()
|
||||
if not self._repo_init:
|
||||
self._create_repo(hub_api)
|
||||
self._repo_init = True
|
||||
|
||||
additions = [
|
||||
CommitOperationAdd(path_in_repo=filename, path_or_fileobj=meta.root / filename)
|
||||
for filename in filenames
|
||||
]
|
||||
logging.info(f"Uploading {','.join(filenames)} to the hub...")
|
||||
preupload_lfs_files(
|
||||
repo_id=self.repo_id, repo_type="dataset", additions=additions, revision=self.revision
|
||||
)
|
||||
logging.info(f"Upload of {','.join(filenames)} to the hub complete!")
|
||||
# if self.cleanup:
|
||||
# for filename in filenames:
|
||||
# self.local_working_dir.rm(filename)
|
||||
self.operations.extend(additions)
|
||||
|
||||
def close(self, rank: int = 0):
|
||||
filelist = list(self.output_mg.get_open_files().keys())
|
||||
super().close()
|
||||
if filelist:
|
||||
logging.info(f"Starting upload of {len(filelist)} files to {self.dataset}")
|
||||
self.upload_files(*filelist)
|
||||
retries = 0
|
||||
while True:
|
||||
try:
|
||||
create_commit(
|
||||
self.repo_id,
|
||||
repo_type="dataset",
|
||||
operations=self.operations,
|
||||
commit_message=f"DataTrove upload ({len(self.operations)} files)",
|
||||
revision=self.revision,
|
||||
)
|
||||
break
|
||||
except HfHubHTTPError as e:
|
||||
if "A commit has happened since" in e.server_message:
|
||||
if retries >= MAX_RETRIES:
|
||||
logging.error(f"Failed to create commit after {MAX_RETRIES=}. Giving up.")
|
||||
raise e
|
||||
logging.info("Commit creation race condition issue. Waiting...")
|
||||
time.sleep(BASE_DELAY * 2**retries + random.uniform(0, 2))
|
||||
retries += 1
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def make_port_executor(raw_dir, repo_id, port_job_name, port_log_dir, slurm=True):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
PortOpenXDataset(raw_dir, repo_id),
|
||||
],
|
||||
"logging_dir": str(port_log_dir),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": port_job_name,
|
||||
"tasks": 2048,
|
||||
"workers": 20,
|
||||
"time": "08:00:00",
|
||||
"partition": "hopper-cpu",
|
||||
"cpus_per_task": 24,
|
||||
"mem_per_cpu_gb": 2,
|
||||
"max_array_launch_parallel": True,
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": 1,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def make_aggregate_executor(
|
||||
repo_ids, aggr_repo_id, port_job_name, aggregate_log_dir, depends=None, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
AggregateDatasets(repo_ids, aggr_repo_id),
|
||||
],
|
||||
"logging_dir": str(aggregate_log_dir),
|
||||
"tasks": 1,
|
||||
"workers": 1,
|
||||
}
|
||||
if depends:
|
||||
kwargs["depends"] = depends
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": port_job_name,
|
||||
"time": "08:00:00",
|
||||
"partition": "hopper-cpu",
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def make_upload_executor(repo_id, upload_job_name, upload_log_dir, depends=None, slurm=True):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
UploadDataset(repo_id),
|
||||
],
|
||||
"logging_dir": str(upload_log_dir),
|
||||
"tasks": 1,
|
||||
"workers": 1,
|
||||
}
|
||||
if depends:
|
||||
kwargs["depends"] = depends
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": upload_job_name,
|
||||
"time": "08:00:00",
|
||||
"partition": "hopper-cpu",
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main(slurm=True):
|
||||
# breakpoint()
|
||||
# for dir_ in Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene").glob("droid_world*"):
|
||||
# shutil.rmtree(dir_)
|
||||
|
||||
world = 2048
|
||||
raw_dir = "/fsx/mustafa_shukor/droid"
|
||||
port_job_name = "port_openx_droid"
|
||||
aggregate_job_name = "aggregate_openx_droid"
|
||||
upload_job_name = "upload_openx_droid"
|
||||
logs_dir = Path("/fsx/remi_cadene/logs")
|
||||
repo_id = "cadene/droid"
|
||||
|
||||
now = dt.datetime.now()
|
||||
datetime = f"{now:%Y-%m-%d}_{now:%H-%M-%S}"
|
||||
# datetime = "2025-02-22_11-17-00"
|
||||
|
||||
port_log_dir = logs_dir / f"{datetime}_{port_job_name}"
|
||||
aggregate_log_dir = logs_dir / f"{datetime}_{aggregate_job_name}"
|
||||
upload_log_dir = logs_dir / f"{datetime}_{upload_job_name}"
|
||||
|
||||
port_executor = make_port_executor(raw_dir, repo_id, port_job_name, port_log_dir, slurm)
|
||||
port_executor.run()
|
||||
|
||||
repo_ids = [f"{repo_id}_{datetime}_world_{world}_rank_{rank}" for rank in range(world)]
|
||||
aggregate_executor = make_aggregate_executor(
|
||||
repo_ids, repo_id, aggregate_job_name, aggregate_log_dir, port_executor, slurm
|
||||
)
|
||||
aggregate_executor.run()
|
||||
|
||||
upload_executor = make_upload_executor(
|
||||
repo_id, upload_job_name, upload_log_dir, aggregate_executor, slurm
|
||||
)
|
||||
upload_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,854 +0,0 @@
|
|||
"""
|
||||
Adapt from https://github.com/openvla/openvla/blob/main/prismatic/vla/datasets/rlds/oxe/configs.py
|
||||
configs.py
|
||||
|
||||
Defines per-dataset configuration (kwargs) for each dataset in Open-X Embodiment.
|
||||
|
||||
Configuration adopts the following structure:
|
||||
image_obs_keys:
|
||||
primary: primary external RGB
|
||||
secondary: secondary external RGB
|
||||
wrist: wrist RGB
|
||||
|
||||
depth_obs_keys:
|
||||
primary: primary external depth
|
||||
secondary: secondary external depth
|
||||
wrist: wrist depth
|
||||
|
||||
# Always 8-dim =>> changes based on `StateEncoding`
|
||||
state_obs_keys:
|
||||
StateEncoding.POS_EULER: EEF XYZ (3) + Roll-Pitch-Yaw (3) + <PAD> (1) + Gripper Open/Close (1)
|
||||
StateEncoding.POS_QUAT: EEF XYZ (3) + Quaternion (4) + Gripper Open/Close (1)
|
||||
StateEncoding.JOINT: Joint Angles (7, <PAD> if fewer) + Gripper Open/Close (1)
|
||||
|
||||
state_encoding: Type of `StateEncoding`
|
||||
action_encoding: Type of action encoding (e.g., EEF Position vs. Joint Position)
|
||||
"""
|
||||
|
||||
from enum import IntEnum
|
||||
from typing import Dict
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def zero_action_filter(traj: Dict) -> bool:
|
||||
"""
|
||||
Filters transitions whose actions are all-0 (only relative actions, no gripper action).
|
||||
Note: this filter is applied *after* action normalization, so need to compare to "normalized 0".
|
||||
"""
|
||||
DROID_Q01 = tf.convert_to_tensor(
|
||||
[
|
||||
-0.7776297926902771,
|
||||
-0.5803514122962952,
|
||||
-0.5795090794563293,
|
||||
-0.6464047729969025,
|
||||
-0.7041108310222626,
|
||||
-0.8895104378461838,
|
||||
]
|
||||
)
|
||||
DROID_Q99 = tf.convert_to_tensor(
|
||||
[
|
||||
0.7597932070493698,
|
||||
0.5726242214441299,
|
||||
0.7351000607013702,
|
||||
0.6705610305070877,
|
||||
0.6464948207139969,
|
||||
0.8897542208433151,
|
||||
]
|
||||
)
|
||||
DROID_NORM_0_ACT = (
|
||||
2 * (tf.zeros_like(traj["action"][:, :6]) - DROID_Q01) / (DROID_Q99 - DROID_Q01 + 1e-8) - 1
|
||||
)
|
||||
|
||||
return tf.reduce_any(tf.math.abs(traj["action"][:, :6] - DROID_NORM_0_ACT) > 1e-5)
|
||||
|
||||
|
||||
# Defines Proprioceptive State Encoding Schemes
|
||||
class StateEncoding(IntEnum):
|
||||
# fmt: off
|
||||
NONE = -1 # No Proprioceptive State
|
||||
POS_EULER = 1 # EEF XYZ (3) + Roll-Pitch-Yaw (3) + <PAD> (1) + Gripper Open/Close (1)
|
||||
POS_QUAT = 2 # EEF XYZ (3) + Quaternion (4) + Gripper Open/Close (1)
|
||||
JOINT = 3 # Joint Angles (7, <PAD> if fewer) + Gripper Open/Close (1)
|
||||
JOINT_BIMANUAL = 4 # Joint Angles (2 x [ Joint Angles (6) + Gripper Open/Close (1) ])
|
||||
# fmt: on
|
||||
|
||||
|
||||
# Defines Action Encoding Schemes
|
||||
class ActionEncoding(IntEnum):
|
||||
# fmt: off
|
||||
EEF_POS = 1 # EEF Delta XYZ (3) + Roll-Pitch-Yaw (3) + Gripper Open/Close (1)
|
||||
JOINT_POS = 2 # Joint Delta Position (7) + Gripper Open/Close (1)
|
||||
JOINT_POS_BIMANUAL = 3 # Joint Delta Position (2 x [ Joint Delta Position (6) + Gripper Open/Close (1) ])
|
||||
EEF_R6 = 4 # EEF Delta XYZ (3) + R6 (6) + Gripper Open/Close (1)
|
||||
# fmt: on
|
||||
|
||||
|
||||
# === Individual Dataset Configs ===
|
||||
OXE_DATASET_CONFIGS = {
|
||||
"fractal20220817_data": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["base_pose_tool_reached", "gripper_closed"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "Google Robot",
|
||||
},
|
||||
"kuka": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [
|
||||
"clip_function_input/base_pose_tool_reached",
|
||||
"gripper_closed",
|
||||
],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Kuka iiwa",
|
||||
},
|
||||
"bridge_oxe": { # Version of Bridge V2 in Open X-Embodiment mixture
|
||||
"image_obs_keys": {"primary": "image", "secondary": "image_1", "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "WidowX",
|
||||
},
|
||||
"bridge_orig": { # Original version of Bridge V2 from project website
|
||||
"image_obs_keys": {"primary": "image_0", "secondary": "image_1", "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "WidowX",
|
||||
},
|
||||
"bridge_dataset": { # Original version of Bridge V2 from project website
|
||||
"image_obs_keys": {"primary": "image_0", "secondary": "image_1", "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "WidowX",
|
||||
},
|
||||
"taco_play": {
|
||||
"image_obs_keys": {
|
||||
"primary": "rgb_static",
|
||||
"secondary": None,
|
||||
"wrist": "rgb_gripper",
|
||||
},
|
||||
"depth_obs_keys": {
|
||||
"primary": "depth_static",
|
||||
"secondary": None,
|
||||
"wrist": "depth_gripper",
|
||||
},
|
||||
"state_obs_keys": ["state_eef", None, "state_gripper"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 15,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"jaco_play": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "image_wrist",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state_eef", None, "state_gripper"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Jaco 2",
|
||||
},
|
||||
"berkeley_cable_routing": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": "top_image",
|
||||
"wrist": "wrist45_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["robot_state", None],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"roboturk": {
|
||||
"image_obs_keys": {"primary": "front_rgb", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [None, None, None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.NONE,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Sawyer",
|
||||
},
|
||||
"nyu_door_opening_surprising_effectiveness": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [None, None, None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.NONE,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "Hello Stretch",
|
||||
},
|
||||
"viola": {
|
||||
"image_obs_keys": {
|
||||
"primary": "agentview_rgb",
|
||||
"secondary": None,
|
||||
"wrist": "eye_in_hand_rgb",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["joint_states", "gripper_states"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"berkeley_autolab_ur5": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "hand_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": "depth", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "UR5",
|
||||
},
|
||||
"toto": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 30,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"language_table": {
|
||||
"image_obs_keys": {"primary": "rgb", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["effector_translation", None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"columbia_cairlab_pusht_real": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["robot_state", None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "UR5",
|
||||
},
|
||||
"stanford_kuka_multimodal_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["ee_position", "ee_orientation", None],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Kuka iiwa",
|
||||
},
|
||||
"nyu_rot_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"stanford_hydra_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"austin_buds_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"nyu_franka_play_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": "image_additional_view",
|
||||
"wrist": None,
|
||||
},
|
||||
"depth_obs_keys": {
|
||||
"primary": "depth",
|
||||
"secondary": "depth_additional_view",
|
||||
"wrist": None,
|
||||
},
|
||||
"state_obs_keys": ["eef_state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"maniskill_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {
|
||||
"primary": "depth",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_depth",
|
||||
},
|
||||
"state_obs_keys": ["tcp_pose", "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"furniture_bench_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"cmu_franka_exploration_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "highres_image",
|
||||
"secondary": None,
|
||||
"wrist": None,
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [None, None, None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.NONE,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"ucsd_kitchen_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["joint_state", None],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 2,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"ucsd_pick_and_place_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"austin_sailor_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"austin_sirius_dataset_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"bc_z": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [
|
||||
"present/xyz",
|
||||
"present/axis_angle",
|
||||
None,
|
||||
"present/sensed_close",
|
||||
],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Google Robot",
|
||||
},
|
||||
"utokyo_pr2_opening_fridge_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "PR2",
|
||||
},
|
||||
"utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "PR2",
|
||||
},
|
||||
"utokyo_xarm_pick_and_place_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": "image2",
|
||||
"wrist": "hand_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["end_effector_pose", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"utokyo_xarm_bimanual_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["pose_r", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "xArm Bimanual",
|
||||
},
|
||||
"robo_net": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": "image1", "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 1,
|
||||
"robot_type": "Multi-Robot",
|
||||
},
|
||||
"berkeley_mvp_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "hand_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["pose", "gripper"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.JOINT_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "xArm",
|
||||
},
|
||||
"berkeley_rpt_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "hand_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["joint_pos", "gripper"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.JOINT_POS,
|
||||
"control_frequency": 30,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"kaist_nonprehensile_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"stanford_mask_vit_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": None,
|
||||
"robot_type": "Sawyer",
|
||||
},
|
||||
"tokyo_u_lsmo_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Cobotta",
|
||||
},
|
||||
"dlr_sara_pour_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "DLR SARA",
|
||||
},
|
||||
"dlr_sara_grid_clamp_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "DLR SARA",
|
||||
},
|
||||
"dlr_edan_shared_control_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "DLR EDAN",
|
||||
},
|
||||
"asu_table_top_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 12.5,
|
||||
"robot_type": "UR5",
|
||||
},
|
||||
"stanford_robocook_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {"primary": "image_1", "secondary": "image_2", "wrist": None},
|
||||
"depth_obs_keys": {"primary": "depth_1", "secondary": "depth_2", "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"imperialcollege_sawyer_wrist_cam": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": [None, None, None, None, None, None, None, "state"],
|
||||
"state_encoding": StateEncoding.NONE,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Sawyer",
|
||||
},
|
||||
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["joint_state", "gripper_state"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"uiuc_d3field": {
|
||||
"image_obs_keys": {"primary": "image_1", "secondary": "image_2", "wrist": None},
|
||||
"depth_obs_keys": {"primary": "depth_1", "secondary": "depth_2", "wrist": None},
|
||||
"state_obs_keys": [None, None, None, None, None, None, None, None],
|
||||
"state_encoding": StateEncoding.NONE,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 1,
|
||||
"robot_type": "Kinova Gen3",
|
||||
},
|
||||
"utaustin_mutex": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"berkeley_fanuc_manipulation": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["joint_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Fanuc Mate",
|
||||
},
|
||||
"cmu_playing_with_food": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image",
|
||||
"secondary": None,
|
||||
"wrist": "finger_vision_1",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"cmu_play_fusion": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"cmu_stretch": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["eef_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Hello Stretch",
|
||||
},
|
||||
"berkeley_gnm_recon": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3,
|
||||
"robot_type": "Jackal",
|
||||
},
|
||||
"berkeley_gnm_cory_hall": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "RC Car",
|
||||
},
|
||||
"berkeley_gnm_sac_son": {
|
||||
"image_obs_keys": {"primary": None, "secondary": None, "wrist": "image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["state", None, None],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "TurtleBot 2",
|
||||
},
|
||||
# NOTE: modified
|
||||
"droid": {
|
||||
"image_obs_keys": {
|
||||
"primary": "exterior_image_1_left",
|
||||
"secondary": "exterior_image_2_left",
|
||||
"wrist": "wrist_image_left",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_QUAT,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 15,
|
||||
"robot_type": "Franka",
|
||||
"aux_kwargs": {
|
||||
"dataset_frame_transform_kwargs": {
|
||||
"chunk_filter_fn": zero_action_filter,
|
||||
},
|
||||
},
|
||||
},
|
||||
"fmb_dataset": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image_side_1",
|
||||
"secondary": "image_side_2",
|
||||
"wrist": "image_wrist_1",
|
||||
},
|
||||
"depth_obs_keys": {
|
||||
"primary": "image_side_1_depth",
|
||||
"secondary": "image_side_2_depth",
|
||||
"wrist": "image_wrist_1_depth",
|
||||
},
|
||||
"state_obs_keys": ["proprio"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
# NOTE: modified
|
||||
"dobbe": {
|
||||
"image_obs_keys": {"primary": "wrist_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 3.75,
|
||||
"robot_type": "Hello Stretch",
|
||||
},
|
||||
"roboset": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image_left",
|
||||
"secondary": "image_right",
|
||||
"wrist": "image_wrist",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["proprio"],
|
||||
"state_encoding": StateEncoding.JOINT,
|
||||
"action_encoding": ActionEncoding.JOINT_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"rh20t": {
|
||||
"image_obs_keys": {
|
||||
"primary": "image_front",
|
||||
"secondary": "image_side_right",
|
||||
"wrist": "image_wrist",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["proprio"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 10,
|
||||
"robot_type": "Flexiv",
|
||||
},
|
||||
### T-DROID datasets
|
||||
"tdroid_carrot_in_bowl": { # "put carrot in bowl" task, 50 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"tdroid_pour_corn_in_pot": { # "pour corn from red bonawl into steel pot" task, 50 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"tdroid_flip_pot_upright": { # "flip pot upright" task, 10 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"tdroid_move_object_onto_plate": { # "move <object> onto plate" task, 150 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"tdroid_knock_object_over": { # "knock <object> over" task, 70 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"tdroid_cover_object_with_towel": { # "cover <object> with towel" task, 45 demos @ 5 Hz control
|
||||
"image_obs_keys": {"primary": "static_image", "secondary": None, "wrist": None},
|
||||
"depth_obs_keys": {"primary": "static_depth_image", "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", None, "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 5,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
### DROID Finetuning datasets
|
||||
"droid_wipe": {
|
||||
"image_obs_keys": {
|
||||
"primary": "exterior_image_2_left",
|
||||
"secondary": None,
|
||||
"wrist": "wrist_image_left",
|
||||
},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["proprio"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 15,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
# NOTE: modified
|
||||
### LIBERO datasets (modified versions)
|
||||
"libero_spatial_no_noops": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": "wrist_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"libero_object_no_noops": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": "wrist_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"libero_goal_no_noops": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": "wrist_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
"libero_10_no_noops": {
|
||||
"image_obs_keys": {"primary": "image", "secondary": None, "wrist": "wrist_image"},
|
||||
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
|
||||
"state_obs_keys": ["EEF_state", "gripper_state"],
|
||||
"state_encoding": StateEncoding.POS_EULER,
|
||||
"action_encoding": ActionEncoding.EEF_POS,
|
||||
"control_frequency": 20,
|
||||
"robot_type": "Franka",
|
||||
},
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --job-name=openx_rlds
|
||||
#SBATCH --partition=hopper-cpu
|
||||
#SBATCH --requeue
|
||||
#SBATCH --time=00:01:00
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --ntasks-per-node=8
|
||||
#SBATCH --output=/fsx/%u/slurm/%j-%x.out
|
||||
|
||||
OUTPUT_DIR="/fsx/${USER}/slurm/${SLURM_JOB_NAME}-${SLURM_JOB_ID}-tasks"
|
||||
mkdir -p $OUTPUT_DIR
|
||||
|
||||
# Function to run a task and redirect output to a separate file
|
||||
run_task() {
|
||||
local task_id=$1
|
||||
local output_file="${OUTPUT_DIR}/task-${task_id}-${SLURM_JOB_ID}.out"
|
||||
|
||||
# Run the task and redirect output
|
||||
python examples/port_datasets/openx_utils/test.py > $output_file 2>&1
|
||||
}
|
||||
|
||||
echo $SBATCH_OUTPUT
|
||||
|
||||
# node has 380850M and 96 cpus
|
||||
trap 'scontrol requeue ${SLURM_JOB_ID}; exit 15' SIGUSR1
|
||||
echo "Starting job"
|
||||
# note the "&" to start srun as a background thread
|
||||
srun python examples/port_datasets/openx_utils/test.py &
|
||||
# wait for signals...
|
||||
wait
|
|
@ -1,54 +0,0 @@
|
|||
import os
|
||||
|
||||
import psutil
|
||||
|
||||
|
||||
def display_system_info():
|
||||
# Get the number of CPUs
|
||||
num_cpus = psutil.cpu_count(logical=True)
|
||||
print(f"Number of CPUs: {num_cpus}")
|
||||
|
||||
# Get memory information
|
||||
memory_info = psutil.virtual_memory()
|
||||
total_memory = memory_info.total / (1024**3) # Convert bytes to GB
|
||||
available_memory = memory_info.available / (1024**3) # Convert bytes to GB
|
||||
used_memory = memory_info.used / (1024**3) # Convert bytes to GB
|
||||
|
||||
print(f"Total Memory: {total_memory:.2f} GB")
|
||||
print(f"Available Memory: {available_memory:.2f} GB")
|
||||
print(f"Used Memory: {used_memory:.2f} GB")
|
||||
|
||||
|
||||
def display_slurm_info():
|
||||
# Get SLURM job ID
|
||||
job_id = os.getenv("SLURM_JOB_ID")
|
||||
print(f"SLURM Job ID: {job_id}")
|
||||
|
||||
# Get SLURM job name
|
||||
job_name = os.getenv("SLURM_JOB_NAME")
|
||||
print(f"SLURM Job Name: {job_name}")
|
||||
|
||||
# Get the number of tasks
|
||||
num_tasks = os.getenv("SLURM_NTASKS")
|
||||
print(f"Number of Tasks: {num_tasks}")
|
||||
|
||||
# Get the number of nodes
|
||||
num_nodes = os.getenv("SLURM_NNODES")
|
||||
print(f"Number of Nodes: {num_nodes}")
|
||||
|
||||
# Get the number of CPUs per task
|
||||
cpus_per_task = os.getenv("SLURM_CPUS_PER_TASK")
|
||||
print(f"CPUs per Task: {cpus_per_task}")
|
||||
|
||||
# Get the node list
|
||||
node_list = os.getenv("SLURM_NODELIST")
|
||||
print(f"Node List: {node_list}")
|
||||
|
||||
# Get the task ID (only available within an srun task)
|
||||
task_id = os.getenv("SLURM_PROCID")
|
||||
print(f"Task ID: {task_id}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
display_system_info()
|
||||
display_slurm_info()
|
|
@ -1,76 +0,0 @@
|
|||
"""
|
||||
Copied from https://github.com/openvla/openvla/blob/main/prismatic/vla/datasets/rlds/utils/data_utils.py
|
||||
"""
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def binarize_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
Converts gripper actions from continuous to binary values (0 and 1).
|
||||
|
||||
We exploit that fact that most of the time, the gripper is fully open (near 1.0) or fully closed (near 0.0). As it
|
||||
transitions between the two, it sometimes passes through a few intermediate values. We relabel those intermediate
|
||||
values based on the state that is reached _after_ those intermediate values.
|
||||
|
||||
In the edge case that the trajectory ends with an intermediate value, we give up on binarizing and relabel that
|
||||
chunk of intermediate values as the last action in the trajectory.
|
||||
|
||||
The `scan_fn` implements the following logic:
|
||||
new_actions = np.empty_like(actions)
|
||||
carry = actions[-1]
|
||||
for i in reversed(range(actions.shape[0])):
|
||||
if in_between_mask[i]:
|
||||
carry = carry
|
||||
else:
|
||||
carry = float(open_mask[i])
|
||||
new_actions[i] = carry
|
||||
"""
|
||||
open_mask, closed_mask = actions > 0.95, actions < 0.05
|
||||
in_between_mask = tf.logical_not(tf.logical_or(open_mask, closed_mask))
|
||||
is_open_float = tf.cast(open_mask, tf.float32)
|
||||
|
||||
def scan_fn(carry, i):
|
||||
return tf.cond(in_between_mask[i], lambda: tf.cast(carry, tf.float32), lambda: is_open_float[i])
|
||||
|
||||
return tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), actions[-1], reverse=True)
|
||||
|
||||
|
||||
def invert_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
return 1 - actions
|
||||
|
||||
|
||||
def rel2abs_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
Converts relative gripper actions (+1 for closing, -1 for opening) to absolute actions (0 = closed; 1 = open).
|
||||
|
||||
Assumes that the first relative gripper is not redundant (i.e. close when already closed)!
|
||||
"""
|
||||
# Note =>> -1 for closing, 1 for opening, 0 for no change
|
||||
opening_mask, closing_mask = actions < -0.1, actions > 0.1
|
||||
thresholded_actions = tf.where(opening_mask, 1, tf.where(closing_mask, -1, 0))
|
||||
|
||||
def scan_fn(carry, i):
|
||||
return tf.cond(thresholded_actions[i] == 0, lambda: carry, lambda: thresholded_actions[i])
|
||||
|
||||
# If no relative grasp, assumes open for whole trajectory
|
||||
start = -1 * thresholded_actions[tf.argmax(thresholded_actions != 0, axis=0)]
|
||||
start = tf.cond(start == 0, lambda: 1, lambda: start)
|
||||
|
||||
# Note =>> -1 for closed, 1 for open
|
||||
new_actions = tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), start)
|
||||
new_actions = tf.cast(new_actions, tf.float32) / 2 + 0.5
|
||||
|
||||
return new_actions
|
||||
|
||||
|
||||
# === Bridge-V2 =>> Dataset-Specific Transform ===
|
||||
def relabel_bridge_actions(traj: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Relabels actions to use reached proprioceptive state; discards last timestep (no-action)."""
|
||||
movement_actions = traj["observation"]["state"][1:, :6] - traj["observation"]["state"][:-1, :6]
|
||||
traj_truncated = tf.nest.map_structure(lambda x: x[:-1], traj)
|
||||
traj_truncated["action"] = tf.concat([movement_actions, traj["action"][:-1, -1:]], axis=1)
|
||||
|
||||
return traj_truncated
|
|
@ -1,997 +0,0 @@
|
|||
"""
|
||||
Adapt from https://github.com/openvla/openvla/blob/main/prismatic/vla/datasets/rlds/oxe/transforms.py
|
||||
transforms.py
|
||||
|
||||
Defines a registry of per-dataset standardization transforms for each dataset in Open-X Embodiment.
|
||||
|
||||
Transforms adopt the following structure:
|
||||
Input: Dictionary of *batched* features (i.e., has leading time dimension)
|
||||
Output: Dictionary `step` =>> {
|
||||
"observation": {
|
||||
<image_keys, depth_image_keys>
|
||||
State (in chosen state representation)
|
||||
},
|
||||
"action": Action (in chosen action representation),
|
||||
"language_instruction": str
|
||||
}
|
||||
"""
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from examples.port_datasets.openx_utils.transform_utils import (
|
||||
binarize_gripper_actions,
|
||||
invert_gripper_actions,
|
||||
rel2abs_gripper_actions,
|
||||
relabel_bridge_actions,
|
||||
)
|
||||
|
||||
|
||||
def droid_baseact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
DROID dataset transformation for actions expressed in *base* frame of the robot.
|
||||
"""
|
||||
|
||||
def rand_swap_exterior_images(img1, img2):
|
||||
"""
|
||||
Randomly swaps the two exterior images (for training with single exterior input).
|
||||
"""
|
||||
return tf.cond(tf.random.uniform(shape=[]) > 0.5, lambda: (img1, img2), lambda: (img2, img1))
|
||||
|
||||
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
|
||||
dR = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
dt,
|
||||
dR,
|
||||
1 - trajectory["action_dict"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["exterior_image_1_left"], trajectory["observation"]["exterior_image_2_left"] = (
|
||||
rand_swap_exterior_images(
|
||||
trajectory["observation"]["exterior_image_1_left"],
|
||||
trajectory["observation"]["exterior_image_2_left"],
|
||||
)
|
||||
)
|
||||
# trajectory["observation"]["proprio"] = tf.concat(
|
||||
# (
|
||||
# trajectory["observation"]["cartesian_position"],
|
||||
# trajectory["observation"]["gripper_position"],
|
||||
# ),
|
||||
# axis=-1,
|
||||
# )
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def droid_finetuning_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
DROID dataset transformation for actions expressed in *base* frame of the robot.
|
||||
"""
|
||||
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
|
||||
dR = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
dt,
|
||||
dR,
|
||||
1 - trajectory["action_dict"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["cartesian_position"],
|
||||
trajectory["observation"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def bridge_oxe_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Applies to version of Bridge V2 in Open X-Embodiment mixture.
|
||||
|
||||
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
|
||||
"""
|
||||
for key in trajectory:
|
||||
if key == "traj_metadata":
|
||||
continue
|
||||
elif key in ["observation", "action"]:
|
||||
for key2 in trajectory[key]:
|
||||
trajectory[key][key2] = trajectory[key][key2][1:]
|
||||
else:
|
||||
trajectory[key] = trajectory[key][1:]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
trajectory = relabel_bridge_actions(trajectory)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def bridge_orig_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Applies to original version of Bridge V2 from the official project website.
|
||||
|
||||
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
|
||||
"""
|
||||
for key in trajectory:
|
||||
if key == "traj_metadata":
|
||||
continue
|
||||
elif key == "observation":
|
||||
for key2 in trajectory[key]:
|
||||
trajectory[key][key2] = trajectory[key][key2][1:]
|
||||
else:
|
||||
trajectory[key] = trajectory[key][1:]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory = relabel_bridge_actions(trajectory)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ppgm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def rt1_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def kuka_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# decode compressed state
|
||||
eef_value = tf.io.decode_compressed(
|
||||
trajectory["observation"]["clip_function_input/base_pose_tool_reached"],
|
||||
compression_type="ZLIB",
|
||||
)
|
||||
eef_value = tf.io.decode_raw(eef_value, tf.float32)
|
||||
trajectory["observation"]["clip_function_input/base_pose_tool_reached"] = tf.reshape(eef_value, (-1, 7))
|
||||
gripper_value = tf.io.decode_compressed(
|
||||
trajectory["observation"]["gripper_closed"], compression_type="ZLIB"
|
||||
)
|
||||
gripper_value = tf.io.decode_raw(gripper_value, tf.float32)
|
||||
trajectory["observation"]["gripper_closed"] = tf.reshape(gripper_value, (-1, 1))
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def taco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state_eef"] = trajectory["observation"]["robot_obs"][:, :6]
|
||||
trajectory["observation"]["state_gripper"] = trajectory["observation"]["robot_obs"][:, 7:8]
|
||||
trajectory["action"] = trajectory["action"]["rel_actions_world"]
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
tf.clip_by_value(trajectory["action"][:, -1:], 0, 1),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def jaco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state_eef"] = trajectory["observation"]["end_effector_cartesian_pos"][:, :6]
|
||||
trajectory["observation"]["state_gripper"] = trajectory["observation"]["end_effector_cartesian_pos"][
|
||||
:, -1:
|
||||
]
|
||||
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
tf.zeros_like(trajectory["action"]["world_vector"]),
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_cable_routing_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.zeros_like(trajectory["action"]["world_vector"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def roboturk_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert absolute gripper action, +1 = open, 0 = close
|
||||
gripper_action = invert_gripper_actions(
|
||||
tf.clip_by_value(trajectory["action"]["gripper_closedness_action"], 0, 1)
|
||||
)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_door_opening_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def viola_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, None]
|
||||
gripper_action = tf.clip_by_value(gripper_action, 0, 1)
|
||||
gripper_action = invert_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_autolab_ur5_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["robot_state"][:, 6:14]
|
||||
trajectory["observation"]["depth"] = trajectory["observation"].pop("image_with_depth")
|
||||
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def toto_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["observation"]["natural_language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def language_table_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# default to "open" gripper
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.ones_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# decode language instruction
|
||||
instruction_bytes = trajectory["observation"]["instruction"]
|
||||
instruction_encoded = tf.strings.unicode_encode(instruction_bytes, output_encoding="UTF-8")
|
||||
# Remove trailing padding --> convert RaggedTensor to regular Tensor.
|
||||
trajectory["language_instruction"] = tf.strings.split(instruction_encoded, "\x00")[:, :1].to_tensor()[
|
||||
:, 0
|
||||
]
|
||||
return trajectory
|
||||
|
||||
|
||||
def pusht_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
trajectory["action"]["gripper_closedness_action"][:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_kuka_multimodal_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["depth_image"] = trajectory["observation"]["depth_image"][..., 0]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tf.zeros_like(trajectory["action"][:, :3]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_rot_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][..., :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :7]
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_hydra_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(trajectory["action"][:, -1:]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :3],
|
||||
trajectory["observation"]["state"][:, 7:10],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -3:-2]
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_buds_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_franka_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["depth"] = tf.cast(trajectory["observation"]["depth"][..., 0], tf.float32)
|
||||
trajectory["observation"]["depth_additional_view"] = tf.cast(
|
||||
trajectory["observation"]["depth_additional_view"][..., 0], tf.float32
|
||||
)
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, -6:]
|
||||
|
||||
# clip gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, -8:-2],
|
||||
tf.clip_by_value(trajectory["action"][:, -2:-1], 0, 1),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def maniskill_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., 7:8]
|
||||
return trajectory
|
||||
|
||||
|
||||
def furniture_bench_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["observation"]["state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :7],
|
||||
trajectory["observation"]["state"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_franka_exploration_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ucsd_kitchen_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ucsd_pick_place_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tf.zeros_like(trajectory["action"][:, :3]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_sailor_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_sirius_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def bc_z_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["future/xyz_residual"][:, :3],
|
||||
trajectory["action"]["future/axis_angle_residual"][:, :3],
|
||||
invert_gripper_actions(tf.cast(trajectory["action"]["future/target_close"][:, :1], tf.float32)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_pr2_opening_fridge_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_pr2_tabletop_manipulation_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def utokyo_xarm_pick_place_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return trajectory
|
||||
|
||||
|
||||
def utokyo_xarm_bimanual_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., -7:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def robo_net_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :4],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :2]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :4],
|
||||
tf.zeros_like(trajectory["action"][:, :2]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_mvp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_rpt_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return trajectory
|
||||
|
||||
|
||||
def kaist_nonprehensible_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, -7:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_mask_vit_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["end_effector_pose"][:, :4],
|
||||
tf.zeros_like(trajectory["observation"]["end_effector_pose"][:, :2]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["end_effector_pose"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :4],
|
||||
tf.zeros_like(trajectory["action"][:, :2]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_lsmo_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def dlr_sara_pour_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return trajectory
|
||||
|
||||
|
||||
def dlr_sara_grid_clamp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :6]
|
||||
return trajectory
|
||||
|
||||
|
||||
def dlr_edan_shared_control_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(trajectory["action"][:, -1:]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def asu_table_top_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["ground_truth_states"]["EE"]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def robocook_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def imperial_wristcam_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def iamlab_pick_insert_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 7:8]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
trajectory["action"][:, 7:8],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def uiuc_d3field_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def utaustin_mutex_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# trajectory["language_instruction"] = tf.fill(
|
||||
# tf.shape(trajectory["language_instruction"]), ""
|
||||
# ) # delete uninformative language instruction
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_fanuc_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 6:7]
|
||||
|
||||
# dataset does not store gripper actions, so use gripper state info, invert so +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
invert_gripper_actions(trajectory["observation"]["gripper_state"]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_playing_with_food_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def playfusion_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
trajectory["action"][:, -4:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_stretch_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :3],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def gnm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["position"],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
|
||||
trajectory["observation"]["yaw"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def fmb_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# every input feature is batched, ie has leading batch dimension
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["eef_pose"],
|
||||
trajectory["observation"]["state_gripper_pose"][..., None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def dobbe_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# every input feature is batched, ie has leading batch dimension
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def roboset_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# every input feature is batched, ie has leading batch dimension
|
||||
trajectory["observation"]["proprio"] = trajectory["observation"]["state"]
|
||||
|
||||
# gripper action is in -1...1 --> clip to 0...1, flip
|
||||
gripper_action = trajectory["action"][:, -1:]
|
||||
gripper_action = invert_gripper_actions(tf.clip_by_value(gripper_action, 0, 1))
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :7],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def rh20t_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["tcp_base"],
|
||||
tf.cast(trajectory["action"]["gripper"][:, None], tf.float32),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["tcp_base"],
|
||||
trajectory["observation"]["gripper_width"][..., None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def tdroid_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def libero_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# gripper action is in -1 (open)...1 (close) --> clip to 0...1, flip --> +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"][:, -1:]
|
||||
gripper_action = invert_gripper_actions(tf.clip_by_value(gripper_action, 0, 1))
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
gripper_action,
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][
|
||||
:, -2:
|
||||
] # 2D gripper state
|
||||
return trajectory
|
||||
|
||||
|
||||
# === Registry ===
|
||||
OXE_STANDARDIZATION_TRANSFORMS = {
|
||||
"bridge_oxe": bridge_oxe_dataset_transform,
|
||||
"bridge_orig": bridge_orig_dataset_transform,
|
||||
"bridge_dataset": bridge_orig_dataset_transform,
|
||||
"ppgm": ppgm_dataset_transform,
|
||||
"ppgm_static": ppgm_dataset_transform,
|
||||
"ppgm_wrist": ppgm_dataset_transform,
|
||||
"fractal20220817_data": rt1_dataset_transform,
|
||||
"kuka": kuka_dataset_transform,
|
||||
"taco_play": taco_play_dataset_transform,
|
||||
"jaco_play": jaco_play_dataset_transform,
|
||||
"berkeley_cable_routing": berkeley_cable_routing_dataset_transform,
|
||||
"roboturk": roboturk_dataset_transform,
|
||||
"nyu_door_opening_surprising_effectiveness": nyu_door_opening_dataset_transform,
|
||||
"viola": viola_dataset_transform,
|
||||
"berkeley_autolab_ur5": berkeley_autolab_ur5_dataset_transform,
|
||||
"toto": toto_dataset_transform,
|
||||
"language_table": language_table_dataset_transform,
|
||||
"columbia_cairlab_pusht_real": pusht_dataset_transform,
|
||||
"stanford_kuka_multimodal_dataset_converted_externally_to_rlds": stanford_kuka_multimodal_dataset_transform,
|
||||
"nyu_rot_dataset_converted_externally_to_rlds": nyu_rot_dataset_transform,
|
||||
"stanford_hydra_dataset_converted_externally_to_rlds": stanford_hydra_dataset_transform,
|
||||
"austin_buds_dataset_converted_externally_to_rlds": austin_buds_dataset_transform,
|
||||
"nyu_franka_play_dataset_converted_externally_to_rlds": nyu_franka_play_dataset_transform,
|
||||
"maniskill_dataset_converted_externally_to_rlds": maniskill_dataset_transform,
|
||||
"furniture_bench_dataset_converted_externally_to_rlds": furniture_bench_dataset_transform,
|
||||
"cmu_franka_exploration_dataset_converted_externally_to_rlds": cmu_franka_exploration_dataset_transform,
|
||||
"ucsd_kitchen_dataset_converted_externally_to_rlds": ucsd_kitchen_dataset_transform,
|
||||
"ucsd_pick_and_place_dataset_converted_externally_to_rlds": ucsd_pick_place_dataset_transform,
|
||||
"austin_sailor_dataset_converted_externally_to_rlds": austin_sailor_dataset_transform,
|
||||
"austin_sirius_dataset_converted_externally_to_rlds": austin_sirius_dataset_transform,
|
||||
"bc_z": bc_z_dataset_transform,
|
||||
"utokyo_pr2_opening_fridge_converted_externally_to_rlds": tokyo_pr2_opening_fridge_dataset_transform,
|
||||
"utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds": tokyo_pr2_tabletop_manipulation_dataset_transform,
|
||||
"utokyo_xarm_pick_and_place_converted_externally_to_rlds": utokyo_xarm_pick_place_dataset_transform,
|
||||
"utokyo_xarm_bimanual_converted_externally_to_rlds": utokyo_xarm_bimanual_dataset_transform,
|
||||
"robo_net": robo_net_dataset_transform,
|
||||
"berkeley_mvp_converted_externally_to_rlds": berkeley_mvp_dataset_transform,
|
||||
"berkeley_rpt_converted_externally_to_rlds": berkeley_rpt_dataset_transform,
|
||||
"kaist_nonprehensile_converted_externally_to_rlds": kaist_nonprehensible_dataset_transform,
|
||||
"stanford_mask_vit_converted_externally_to_rlds": stanford_mask_vit_dataset_transform,
|
||||
"tokyo_u_lsmo_converted_externally_to_rlds": tokyo_lsmo_dataset_transform,
|
||||
"dlr_sara_pour_converted_externally_to_rlds": dlr_sara_pour_dataset_transform,
|
||||
"dlr_sara_grid_clamp_converted_externally_to_rlds": dlr_sara_grid_clamp_dataset_transform,
|
||||
"dlr_edan_shared_control_converted_externally_to_rlds": dlr_edan_shared_control_dataset_transform,
|
||||
"asu_table_top_converted_externally_to_rlds": asu_table_top_dataset_transform,
|
||||
"stanford_robocook_converted_externally_to_rlds": robocook_dataset_transform,
|
||||
"imperialcollege_sawyer_wrist_cam": imperial_wristcam_dataset_transform,
|
||||
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": iamlab_pick_insert_dataset_transform,
|
||||
"uiuc_d3field": uiuc_d3field_dataset_transform,
|
||||
"utaustin_mutex": utaustin_mutex_dataset_transform,
|
||||
"berkeley_fanuc_manipulation": berkeley_fanuc_dataset_transform,
|
||||
"cmu_playing_with_food": cmu_playing_with_food_dataset_transform,
|
||||
"cmu_play_fusion": playfusion_dataset_transform,
|
||||
"cmu_stretch": cmu_stretch_dataset_transform,
|
||||
"berkeley_gnm_recon": gnm_dataset_transform,
|
||||
"berkeley_gnm_cory_hall": gnm_dataset_transform,
|
||||
"berkeley_gnm_sac_son": gnm_dataset_transform,
|
||||
"droid": droid_baseact_transform,
|
||||
"fmb_dataset": fmb_dataset_transform,
|
||||
"dobbe": dobbe_dataset_transform,
|
||||
"roboset": roboset_dataset_transform,
|
||||
"rh20t_rlds": rh20t_dataset_transform,
|
||||
### T-DROID datasets
|
||||
"tdroid_carrot_in_bowl": tdroid_dataset_transform,
|
||||
"tdroid_pour_corn_in_pot": tdroid_dataset_transform,
|
||||
"tdroid_flip_pot_upright": tdroid_dataset_transform,
|
||||
"tdroid_move_object_onto_plate": tdroid_dataset_transform,
|
||||
"tdroid_knock_object_over": tdroid_dataset_transform,
|
||||
"tdroid_cover_object_with_towel": tdroid_dataset_transform,
|
||||
### DROID Finetuning datasets
|
||||
"droid_wipe": droid_finetuning_transform,
|
||||
### LIBERO datasets (modified versions)
|
||||
"libero_spatial_no_noops": libero_dataset_transform,
|
||||
"libero_object_no_noops": libero_dataset_transform,
|
||||
"libero_goal_no_noops": libero_dataset_transform,
|
||||
"libero_10_no_noops": libero_dataset_transform,
|
||||
}
|
|
@ -1,5 +1,5 @@
|
|||
import logging
|
||||
import subprocess
|
||||
import shutil
|
||||
|
||||
import pandas as pd
|
||||
import tqdm
|
||||
|
@ -16,7 +16,7 @@ def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
|
|||
robot_type = all_metadata[0].robot_type
|
||||
features = all_metadata[0].features
|
||||
|
||||
for meta in tqdm.tqdm(all_metadata):
|
||||
for meta in tqdm.tqdm(all_metadata, desc="Validate all meta data"):
|
||||
if fps != meta.fps:
|
||||
raise ValueError(f"Same fps is expected, but got fps={meta.fps} instead of {fps}.")
|
||||
if robot_type != meta.robot_type:
|
||||
|
@ -41,7 +41,7 @@ def get_update_episode_and_task_func(episode_index_to_add, task_index_to_global_
|
|||
|
||||
|
||||
def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, aggr_root=None):
|
||||
logging.info("start aggregate_datasets")
|
||||
logging.info("Start aggregate_datasets")
|
||||
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
|
||||
|
||||
|
@ -56,12 +56,12 @@ def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, aggr_root=None):
|
|||
root=aggr_root,
|
||||
)
|
||||
|
||||
logging.info("find all tasks")
|
||||
logging.info("Find all tasks")
|
||||
# find all tasks, deduplicate them, create new task indices for each dataset
|
||||
# indexed by dataset index
|
||||
datasets_task_index_to_aggr_task_index = {}
|
||||
aggr_task_index = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata)):
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Find all tasks")):
|
||||
task_index_to_aggr_task_index = {}
|
||||
|
||||
for task_index, task in meta.tasks.items():
|
||||
|
@ -76,9 +76,9 @@ def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, aggr_root=None):
|
|||
|
||||
datasets_task_index_to_aggr_task_index[dataset_index] = task_index_to_aggr_task_index
|
||||
|
||||
logging.info("cp data and videos")
|
||||
logging.info("Copy data and videos")
|
||||
aggr_episode_index_shift = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata)):
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Copy data and videos")):
|
||||
# cp data
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
|
@ -102,10 +102,10 @@ def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, aggr_root=None):
|
|||
video_path = meta.root / meta.get_video_file_path(episode_index, vid_key)
|
||||
aggr_video_path = aggr_meta.root / aggr_meta.get_video_file_path(aggr_episode_index, vid_key)
|
||||
aggr_video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
# shutil.copy(video_path, aggr_video_path)
|
||||
shutil.copy(video_path, aggr_video_path)
|
||||
|
||||
copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
subprocess.Popen(copy_command, shell=True)
|
||||
# copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
# subprocess.Popen(copy_command, shell=True)
|
||||
|
||||
# populate episodes
|
||||
for episode_index, episode_dict in meta.episodes.items():
|
||||
|
|
Loading…
Reference in New Issue