fix(codec): hot-fix for default codec in linux arm platforms (#868)
This commit is contained in:
parent
9f0a8a49d0
commit
1c15bab70f
|
@ -51,7 +51,7 @@ For a comprehensive list and documentation of these parameters, see the ffmpeg d
|
|||
### Decoding parameters
|
||||
**Decoder**
|
||||
We tested two video decoding backends from torchvision:
|
||||
- `pyav` (default)
|
||||
- `pyav`
|
||||
- `video_reader` (requires to build torchvision from source)
|
||||
|
||||
**Requested timestamps**
|
||||
|
|
|
@ -69,6 +69,7 @@ from lerobot.common.datasets.video_utils import (
|
|||
VideoFrame,
|
||||
decode_video_frames,
|
||||
encode_video_frames,
|
||||
get_safe_default_codec,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
@ -462,7 +463,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
|
||||
video files are already present on local disk, they won't be downloaded again. Defaults to
|
||||
True.
|
||||
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec.
|
||||
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec when available int the platform; otherwise, defaults to 'pyav'.
|
||||
You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision.
|
||||
"""
|
||||
super().__init__()
|
||||
|
@ -473,7 +474,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
self.episodes = episodes
|
||||
self.tolerance_s = tolerance_s
|
||||
self.revision = revision if revision else CODEBASE_VERSION
|
||||
self.video_backend = video_backend if video_backend else "torchcodec"
|
||||
self.video_backend = video_backend if video_backend else get_safe_default_codec()
|
||||
self.delta_indices = None
|
||||
|
||||
# Unused attributes
|
||||
|
@ -1027,7 +1028,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
obj.delta_timestamps = None
|
||||
obj.delta_indices = None
|
||||
obj.episode_data_index = None
|
||||
obj.video_backend = video_backend if video_backend is not None else "torchcodec"
|
||||
obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec()
|
||||
return obj
|
||||
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
import json
|
||||
import logging
|
||||
import subprocess
|
||||
|
@ -27,14 +28,23 @@ import torch
|
|||
import torchvision
|
||||
from datasets.features.features import register_feature
|
||||
from PIL import Image
|
||||
from torchcodec.decoders import VideoDecoder
|
||||
|
||||
|
||||
def get_safe_default_codec():
|
||||
if importlib.util.find_spec("torchcodec"):
|
||||
return "torchcodec"
|
||||
else:
|
||||
logging.warning(
|
||||
"'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder"
|
||||
)
|
||||
return "pyav"
|
||||
|
||||
|
||||
def decode_video_frames(
|
||||
video_path: Path | str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
backend: str = "torchcodec",
|
||||
backend: str | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Decodes video frames using the specified backend.
|
||||
|
@ -43,13 +53,15 @@ def decode_video_frames(
|
|||
video_path (Path): Path to the video file.
|
||||
timestamps (list[float]): List of timestamps to extract frames.
|
||||
tolerance_s (float): Allowed deviation in seconds for frame retrieval.
|
||||
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec".
|
||||
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav"..
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Decoded frames.
|
||||
|
||||
Currently supports torchcodec on cpu and pyav.
|
||||
"""
|
||||
if backend is None:
|
||||
backend = get_safe_default_codec()
|
||||
if backend == "torchcodec":
|
||||
return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
|
||||
elif backend in ["pyav", "video_reader"]:
|
||||
|
@ -173,6 +185,12 @@ def decode_video_frames_torchcodec(
|
|||
and all subsequent frames until reaching the requested frame. The number of key frames in a video
|
||||
can be adjusted during encoding to take into account decoding time and video size in bytes.
|
||||
"""
|
||||
|
||||
if importlib.util.find_spec("torchcodec"):
|
||||
from torchcodec.decoders import VideoDecoder
|
||||
else:
|
||||
raise ImportError("torchcodec is required but not available.")
|
||||
|
||||
# initialize video decoder
|
||||
decoder = VideoDecoder(video_path, device=device, seek_mode="approximate")
|
||||
loaded_frames = []
|
||||
|
|
|
@ -20,6 +20,7 @@ from lerobot.common import (
|
|||
policies, # noqa: F401
|
||||
)
|
||||
from lerobot.common.datasets.transforms import ImageTransformsConfig
|
||||
from lerobot.common.datasets.video_utils import get_safe_default_codec
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -35,7 +36,7 @@ class DatasetConfig:
|
|||
image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig)
|
||||
revision: str | None = None
|
||||
use_imagenet_stats: bool = True
|
||||
video_backend: str = "pyav"
|
||||
video_backend: str = field(default_factory=get_safe_default_codec)
|
||||
|
||||
|
||||
@dataclass
|
||||
|
|
|
@ -69,7 +69,7 @@ dependencies = [
|
|||
"rerun-sdk>=0.21.0",
|
||||
"termcolor>=2.4.0",
|
||||
"torch>=2.2.1",
|
||||
"torchcodec>=0.2.1",
|
||||
"torchcodec>=0.2.1 ; sys_platform != 'linux' or (sys_platform == 'linux' and platform_machine != 'aarch64' and platform_machine != 'arm64' and platform_machine != 'armv7l')",
|
||||
"torchvision>=0.21.0",
|
||||
"wandb>=0.16.3",
|
||||
"zarr>=2.17.0",
|
||||
|
|
Loading…
Reference in New Issue