fix(codec): hot-fix for default codec in linux arm platforms (#868)

This commit is contained in:
Steven Palma 2025-03-17 13:23:11 +01:00 committed by GitHub
parent 9f0a8a49d0
commit 1c15bab70f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 29 additions and 9 deletions

View File

@ -51,7 +51,7 @@ For a comprehensive list and documentation of these parameters, see the ffmpeg d
### Decoding parameters
**Decoder**
We tested two video decoding backends from torchvision:
- `pyav` (default)
- `pyav`
- `video_reader` (requires to build torchvision from source)
**Requested timestamps**

View File

@ -69,6 +69,7 @@ from lerobot.common.datasets.video_utils import (
VideoFrame,
decode_video_frames,
encode_video_frames,
get_safe_default_codec,
get_video_info,
)
from lerobot.common.robot_devices.robots.utils import Robot
@ -462,7 +463,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
video files are already present on local disk, they won't be downloaded again. Defaults to
True.
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec.
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec when available int the platform; otherwise, defaults to 'pyav'.
You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision.
"""
super().__init__()
@ -473,7 +474,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.episodes = episodes
self.tolerance_s = tolerance_s
self.revision = revision if revision else CODEBASE_VERSION
self.video_backend = video_backend if video_backend else "torchcodec"
self.video_backend = video_backend if video_backend else get_safe_default_codec()
self.delta_indices = None
# Unused attributes
@ -1027,7 +1028,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
obj.delta_timestamps = None
obj.delta_indices = None
obj.episode_data_index = None
obj.video_backend = video_backend if video_backend is not None else "torchcodec"
obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec()
return obj

View File

@ -13,6 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import json
import logging
import subprocess
@ -27,14 +28,23 @@ import torch
import torchvision
from datasets.features.features import register_feature
from PIL import Image
from torchcodec.decoders import VideoDecoder
def get_safe_default_codec():
if importlib.util.find_spec("torchcodec"):
return "torchcodec"
else:
logging.warning(
"'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder"
)
return "pyav"
def decode_video_frames(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
backend: str = "torchcodec",
backend: str | None = None,
) -> torch.Tensor:
"""
Decodes video frames using the specified backend.
@ -43,13 +53,15 @@ def decode_video_frames(
video_path (Path): Path to the video file.
timestamps (list[float]): List of timestamps to extract frames.
tolerance_s (float): Allowed deviation in seconds for frame retrieval.
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec".
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav"..
Returns:
torch.Tensor: Decoded frames.
Currently supports torchcodec on cpu and pyav.
"""
if backend is None:
backend = get_safe_default_codec()
if backend == "torchcodec":
return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
elif backend in ["pyav", "video_reader"]:
@ -173,6 +185,12 @@ def decode_video_frames_torchcodec(
and all subsequent frames until reaching the requested frame. The number of key frames in a video
can be adjusted during encoding to take into account decoding time and video size in bytes.
"""
if importlib.util.find_spec("torchcodec"):
from torchcodec.decoders import VideoDecoder
else:
raise ImportError("torchcodec is required but not available.")
# initialize video decoder
decoder = VideoDecoder(video_path, device=device, seek_mode="approximate")
loaded_frames = []

View File

@ -20,6 +20,7 @@ from lerobot.common import (
policies, # noqa: F401
)
from lerobot.common.datasets.transforms import ImageTransformsConfig
from lerobot.common.datasets.video_utils import get_safe_default_codec
@dataclass
@ -35,7 +36,7 @@ class DatasetConfig:
image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig)
revision: str | None = None
use_imagenet_stats: bool = True
video_backend: str = "pyav"
video_backend: str = field(default_factory=get_safe_default_codec)
@dataclass

View File

@ -69,7 +69,7 @@ dependencies = [
"rerun-sdk>=0.21.0",
"termcolor>=2.4.0",
"torch>=2.2.1",
"torchcodec>=0.2.1",
"torchcodec>=0.2.1 ; sys_platform != 'linux' or (sys_platform == 'linux' and platform_machine != 'aarch64' and platform_machine != 'arm64' and platform_machine != 'armv7l')",
"torchvision>=0.21.0",
"wandb>=0.16.3",
"zarr>=2.17.0",