diff --git a/.gitattributes b/.gitattributes
index df7d2d5b..4135de8f 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -1 +1,2 @@
*.memmap filter=lfs diff=lfs merge=lfs -text
+*.stl filter=lfs diff=lfs merge=lfs -text
diff --git a/lerobot/common/datasets/abstract.py b/lerobot/common/datasets/abstract.py
index 8295ed48..d0206cc7 100644
--- a/lerobot/common/datasets/abstract.py
+++ b/lerobot/common/datasets/abstract.py
@@ -32,6 +32,7 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
+ # storage = None,
):
self.dataset_id = dataset_id
self.version = version
@@ -43,7 +44,12 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
f"The version of the dataset ({self.version}) is not enforced when root is provided ({self.root})."
)
- storage = self._download_or_load_dataset()
+ # HACK
+ if dataset_id == "xarm_lift_medium":
+ self.data_dir = self.root / self.dataset_id
+ storage = self._download_and_preproc_obsolete()
+ else:
+ storage = self._download_or_load_dataset()
super().__init__(
storage=storage,
diff --git a/lerobot/common/datasets/simxarm.py b/lerobot/common/datasets/simxarm.py
index d7e2e18f..b5cec7e1 100644
--- a/lerobot/common/datasets/simxarm.py
+++ b/lerobot/common/datasets/simxarm.py
@@ -67,11 +67,11 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
)
def _download_and_preproc_obsolete(self):
- assert self.root is not None
+ # assert self.root is not None
# TODO(rcadene): finish download
- download()
+ # download()
- dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
+ dataset_path = self.root / f"{self.dataset_id}" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
@@ -105,8 +105,8 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
"frame_id": torch.arange(0, num_frames, 1),
("next", "observation", "image"): next_image,
("next", "observation", "state"): next_state,
- ("next", "observation", "reward"): next_reward,
- ("next", "observation", "done"): next_done,
+ ("next", "reward"): next_reward,
+ ("next", "done"): next_done,
},
batch_size=num_frames,
)
diff --git a/lerobot/common/envs/aloha/assets/tabletop.stl b/lerobot/common/envs/aloha/assets/tabletop.stl
index ab35cdf7..1c17d3f0 100644
Binary files a/lerobot/common/envs/aloha/assets/tabletop.stl and b/lerobot/common/envs/aloha/assets/tabletop.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_left.stl b/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_left.stl
index 534c7af9..ef1f3f35 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_left.stl and b/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_left.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_right.stl b/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_right.stl
index d6a492c2..7eb8aefd 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_right.stl and b/lerobot/common/envs/aloha/assets/vx300s_10_custom_finger_right.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl b/lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl
index d6df86be..4c2b3a1f 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl and b/lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl b/lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl
index 193014b6..8a30f7cc 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl and b/lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_1_base.stl b/lerobot/common/envs/aloha/assets/vx300s_1_base.stl
index 5a7efda2..9198e625 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_1_base.stl and b/lerobot/common/envs/aloha/assets/vx300s_1_base.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl b/lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl
index dc22aa7e..ab3d9570 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl and b/lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl b/lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl
index 111c586e..3d6f663c 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl and b/lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl b/lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl
index 8170d21c..4eb249e7 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl and b/lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl b/lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl
index 39581f83..34c76221 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl and b/lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl b/lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl
index ab8423e9..232fabf7 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl and b/lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl b/lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl
index 043db9ca..946c3c86 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl and b/lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl b/lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl
index 36099b42..28d5bd76 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl and b/lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl differ
diff --git a/lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl b/lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl
index eba3caa2..5201d5ea 100644
Binary files a/lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl and b/lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl differ
diff --git a/lerobot/common/envs/factory.py b/lerobot/common/envs/factory.py
index 06c7c43f..855e073b 100644
--- a/lerobot/common/envs/factory.py
+++ b/lerobot/common/envs/factory.py
@@ -17,7 +17,7 @@ def make_env(cfg, transform=None):
}
if cfg.env.name == "simxarm":
- from lerobot.common.envs.simxarm import SimxarmEnv
+ from lerobot.common.envs.simxarm.env import SimxarmEnv
kwargs["task"] = cfg.env.task
clsfunc = SimxarmEnv
diff --git a/lerobot/common/envs/simxarm.py b/lerobot/common/envs/simxarm/env.py
similarity index 93%
rename from lerobot/common/envs/simxarm.py
rename to lerobot/common/envs/simxarm/env.py
index eac3666d..7236e911 100644
--- a/lerobot/common/envs/simxarm.py
+++ b/lerobot/common/envs/simxarm/env.py
@@ -19,8 +19,8 @@ from lerobot.common.utils import set_seed
MAX_NUM_ACTIONS = 4
-_has_gym = importlib.util.find_spec("gym") is not None
-_has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
+_has_gym = importlib.util.find_spec("gymnasium") is not None
+# _has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
class SimxarmEnv(AbstractEnv):
@@ -49,13 +49,14 @@ class SimxarmEnv(AbstractEnv):
)
def _make_env(self):
- if not _has_simxarm:
- raise ImportError("Cannot import simxarm.")
+ # if not _has_simxarm:
+ # raise ImportError("Cannot import simxarm.")
if not _has_gym:
raise ImportError("Cannot import gym.")
- import gym
- from simxarm import TASKS
+ import gymnasium
+
+ from lerobot.common.envs.simxarm.simxarm import TASKS
if self.task not in TASKS:
raise ValueError(f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}")
@@ -63,7 +64,7 @@ class SimxarmEnv(AbstractEnv):
self._env = TASKS[self.task]["env"]()
num_actions = len(TASKS[self.task]["action_space"])
- self._action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
+ self._action_space = gymnasium.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
self._action_padding = np.zeros((MAX_NUM_ACTIONS - num_actions), dtype=np.float32)
if "w" not in TASKS[self.task]["action_space"]:
self._action_padding[-1] = 1.0
@@ -230,4 +231,7 @@ class SimxarmEnv(AbstractEnv):
def _set_seed(self, seed: Optional[int]):
set_seed(seed)
- self._env.seed(seed)
+ # self._env.seed(seed)
+ # self._env.action_space.seed(seed)
+ # self.set_seed(seed)
+ self._seed = seed
diff --git a/lerobot/common/envs/simxarm/simxarm/__init__.py b/lerobot/common/envs/simxarm/simxarm/__init__.py
new file mode 100644
index 00000000..870eb5a9
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/__init__.py
@@ -0,0 +1,165 @@
+from collections import OrderedDict, deque
+
+import gym
+import numpy as np
+from gym.wrappers import TimeLimit
+
+from lerobot.common.envs.simxarm.simxarm.task.lift import Lift
+from lerobot.common.envs.simxarm.simxarm.task.peg_in_box import PegInBox
+from lerobot.common.envs.simxarm.simxarm.task.push import Push
+from lerobot.common.envs.simxarm.simxarm.task.reach import Reach
+
+TASKS = OrderedDict(
+ (
+ (
+ "reach",
+ {
+ "env": Reach,
+ "action_space": "xyz",
+ "episode_length": 50,
+ "description": "Reach a target location with the end effector",
+ },
+ ),
+ (
+ "push",
+ {
+ "env": Push,
+ "action_space": "xyz",
+ "episode_length": 50,
+ "description": "Push a cube to a target location",
+ },
+ ),
+ (
+ "peg_in_box",
+ {
+ "env": PegInBox,
+ "action_space": "xyz",
+ "episode_length": 50,
+ "description": "Insert a peg into a box",
+ },
+ ),
+ (
+ "lift",
+ {
+ "env": Lift,
+ "action_space": "xyzw",
+ "episode_length": 50,
+ "description": "Lift a cube above a height threshold",
+ },
+ ),
+ )
+)
+
+
+class SimXarmWrapper(gym.Wrapper):
+ """
+ A wrapper for the SimXarm environments. This wrapper is used to
+ convert the action and observation spaces to the correct format.
+ """
+
+ def __init__(self, env, task, obs_mode, image_size, action_repeat, frame_stack=1, channel_last=False):
+ super().__init__(env)
+ self._env = env
+ self.obs_mode = obs_mode
+ self.image_size = image_size
+ self.action_repeat = action_repeat
+ self.frame_stack = frame_stack
+ self._frames = deque([], maxlen=frame_stack)
+ self.channel_last = channel_last
+ self._max_episode_steps = task["episode_length"] // action_repeat
+
+ image_shape = (
+ (image_size, image_size, 3 * frame_stack)
+ if channel_last
+ else (3 * frame_stack, image_size, image_size)
+ )
+ if obs_mode == "state":
+ self.observation_space = env.observation_space["observation"]
+ elif obs_mode == "rgb":
+ self.observation_space = gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8)
+ elif obs_mode == "all":
+ self.observation_space = gym.spaces.Dict(
+ state=gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32),
+ rgb=gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8),
+ )
+ else:
+ raise ValueError(f"Unknown obs_mode {obs_mode}. Must be one of [rgb, all, state]")
+ self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(len(task["action_space"]),))
+ self.action_padding = np.zeros(4 - len(task["action_space"]), dtype=np.float32)
+ if "w" not in task["action_space"]:
+ self.action_padding[-1] = 1.0
+
+ def _render_obs(self):
+ obs = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
+ if not self.channel_last:
+ obs = obs.transpose(2, 0, 1)
+ return obs.copy()
+
+ def _update_frames(self, reset=False):
+ pixels = self._render_obs()
+ self._frames.append(pixels)
+ if reset:
+ for _ in range(1, self.frame_stack):
+ self._frames.append(pixels)
+ assert len(self._frames) == self.frame_stack
+
+ def transform_obs(self, obs, reset=False):
+ if self.obs_mode == "state":
+ return obs["observation"]
+ elif self.obs_mode == "rgb":
+ self._update_frames(reset=reset)
+ rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
+ return rgb_obs
+ elif self.obs_mode == "all":
+ self._update_frames(reset=reset)
+ rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
+ return OrderedDict((("rgb", rgb_obs), ("state", self.robot_state)))
+ else:
+ raise ValueError(f"Unknown obs_mode {self.obs_mode}. Must be one of [rgb, all, state]")
+
+ def reset(self):
+ return self.transform_obs(self._env.reset(), reset=True)
+
+ def step(self, action):
+ action = np.concatenate([action, self.action_padding])
+ reward = 0.0
+ for _ in range(self.action_repeat):
+ obs, r, done, info = self._env.step(action)
+ reward += r
+ return self.transform_obs(obs), reward, done, info
+
+ def render(self, mode="rgb_array", width=384, height=384, **kwargs):
+ return self._env.render(mode, width=width, height=height)
+
+ @property
+ def state(self):
+ return self._env.robot_state
+
+
+def make(task, obs_mode="state", image_size=84, action_repeat=1, frame_stack=1, channel_last=False, seed=0):
+ """
+ Create a new environment.
+ Args:
+ task (str): The task to create an environment for. Must be one of:
+ - 'reach'
+ - 'push'
+ - 'peg-in-box'
+ - 'lift'
+ obs_mode (str): The observation mode to use. Must be one of:
+ - 'state': Only state observations
+ - 'rgb': RGB images
+ - 'all': RGB images and state observations
+ image_size (int): The size of the image observations
+ action_repeat (int): The number of times to repeat the action
+ seed (int): The random seed to use
+ Returns:
+ gym.Env: The environment
+ """
+ if task not in TASKS:
+ raise ValueError(f"Unknown task {task}. Must be one of {list(TASKS.keys())}")
+ env = TASKS[task]["env"]()
+ env = TimeLimit(env, TASKS[task]["episode_length"])
+ env = SimXarmWrapper(env, TASKS[task], obs_mode, image_size, action_repeat, frame_stack, channel_last)
+ env.seed(seed)
+
+ return env
diff --git a/lerobot/common/envs/simxarm/simxarm/task/__init__.py b/lerobot/common/envs/simxarm/simxarm/task/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/lift.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/lift.xml
new file mode 100644
index 00000000..92231f92
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/lift.xml
@@ -0,0 +1,53 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/base_link.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/base_link.stl
new file mode 100644
index 00000000..f1f52955
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/base_link.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:21fb81ae7fba19e3c6b2d2ca60c8051712ba273357287eb5a397d92d61c7a736
+size 1211434
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner.stl
new file mode 100644
index 00000000..6cb88945
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:be68ce180d11630a667a5f37f4dffcc3feebe4217d4bb3912c813b6d9ca3ec66
+size 3284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner2.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner2.stl
new file mode 100644
index 00000000..dab55ef5
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_inner2.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2c6448552bf6b1c4f17334d686a5320ce051bcdfe31431edf69303d8a570d1de
+size 3284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_outer.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_outer.stl
new file mode 100644
index 00000000..21cf11fa
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/block_outer.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:748b9e197e6521914f18d1f6383a36f211136b3f33f2ad2a8c11b9f921c2cf86
+size 6284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_finger.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_finger.stl
new file mode 100644
index 00000000..6bf4e502
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_finger.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a44756eb72f9c214cb37e61dc209cd7073fdff3e4271a7423476ef6fd090d2d4
+size 242684
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_inner_knuckle.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_inner_knuckle.stl
new file mode 100644
index 00000000..817c7e1d
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_inner_knuckle.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e8e48692ad26837bb3d6a97582c89784d09948fc09bfe4e5a59017859ff04dac
+size 366284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_outer_knuckle.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_outer_knuckle.stl
new file mode 100644
index 00000000..010c0f3b
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/left_outer_knuckle.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:501665812b08d67e764390db781e839adc6896a9540301d60adf606f57648921
+size 22284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link1.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link1.stl
new file mode 100644
index 00000000..f2b676f2
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link1.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:34b541122df84d2ef5fcb91b715eb19659dc15ad8d44a191dde481f780265636
+size 184184
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link2.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link2.stl
new file mode 100644
index 00000000..bf93580c
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link2.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:61e641cd47c169ecef779683332e00e4914db729bf02dfb61bfbe69351827455
+size 225584
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link3.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link3.stl
new file mode 100644
index 00000000..d316d233
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link3.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9e2798e7946dd70046c95455d5ba96392d0b54a6069caba91dc4ca66e1379b42
+size 237084
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link4.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link4.stl
new file mode 100644
index 00000000..f6d5fe94
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link4.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c757fee95f873191a0633c355c07a360032960771cabbd7593a6cdb0f1ffb089
+size 243684
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link5.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link5.stl
new file mode 100644
index 00000000..e037b8b9
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link5.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:715ad5787c5dab57589937fd47289882707b5e1eb997e340d567785b02f4ec90
+size 229084
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link6.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link6.stl
new file mode 100644
index 00000000..198c5300
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link6.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:85b320aa420497827223d16d492bba8de091173374e361396fc7a5dad7bdb0cb
+size 399384
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link7.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link7.stl
new file mode 100644
index 00000000..ce9a39ac
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link7.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:97115d848fbf802cb770cd9be639ae2af993103b9d9bbb0c50c943c738a36f18
+size 231684
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link_base.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link_base.stl
new file mode 100644
index 00000000..110b9531
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/link_base.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f6fcbc18258090eb56c21cfb17baa5ae43abc98b1958cd366f3a73b9898fc7f0
+size 2106184
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_finger.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_finger.stl
new file mode 100644
index 00000000..03f26e9a
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_finger.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c5dee87c7f37baf554b8456ebfe0b3e8ed0b22b8938bd1add6505c2ad6d32c7d
+size 242684
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_inner_knuckle.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_inner_knuckle.stl
new file mode 100644
index 00000000..8586f344
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_inner_knuckle.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b41dd2c2c550281bf78d7cc6fa117b14786700e5c453560a0cb5fd6dfa0ffb3e
+size 366284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_outer_knuckle.stl b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_outer_knuckle.stl
new file mode 100644
index 00000000..ae7afc25
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/mesh/right_outer_knuckle.stl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75ca1107d0a42a0f03802a9a49cab48419b31851ee8935f8f1ca06be1c1c91e8
+size 22284
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/peg_in_box.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/peg_in_box.xml
new file mode 100644
index 00000000..0f85459f
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/peg_in_box.xml
@@ -0,0 +1,74 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/push.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/push.xml
new file mode 100644
index 00000000..42a78c8a
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/push.xml
@@ -0,0 +1,54 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/reach.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/reach.xml
new file mode 100644
index 00000000..ded6d209
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/reach.xml
@@ -0,0 +1,48 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/shared.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/shared.xml
new file mode 100644
index 00000000..ee56f8f0
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/shared.xml
@@ -0,0 +1,51 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/assets/xarm.xml b/lerobot/common/envs/simxarm/simxarm/task/assets/xarm.xml
new file mode 100644
index 00000000..023474d6
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/assets/xarm.xml
@@ -0,0 +1,88 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lerobot/common/envs/simxarm/simxarm/task/base.py b/lerobot/common/envs/simxarm/simxarm/task/base.py
new file mode 100644
index 00000000..d5f54f72
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/base.py
@@ -0,0 +1,170 @@
+import os
+
+import glfw
+import mujoco
+import numpy as np
+
+# import gym
+# from gym.envs.robotics import robot_env
+from gymnasium_robotics.envs import robot_env
+
+from lerobot.common.envs.simxarm.simxarm.task import mocap
+
+
+class Base(robot_env.MujocoRobotEnv):
+ """
+ Superclass for all simxarm environments.
+ Args:
+ xml_name (str): name of the xml environment file
+ gripper_rotation (list): initial rotation of the gripper (given as a quaternion)
+ """
+
+ def __init__(self, xml_name, gripper_rotation=None):
+ if gripper_rotation is None:
+ gripper_rotation = [0, 1, 0, 0]
+ self.gripper_rotation = np.array(gripper_rotation, dtype=np.float32)
+ self.center_of_table = np.array([1.655, 0.3, 0.63625])
+ self.max_z = 1.2
+ self.min_z = 0.2
+ super().__init__(
+ model_path=os.path.join(os.path.dirname(__file__), "assets", xml_name + ".xml"),
+ n_substeps=20,
+ n_actions=4,
+ initial_qpos={},
+ )
+
+ @property
+ def dt(self):
+ return self.n_substeps * self.model.opt.timestep
+
+ @property
+ def eef(self):
+ return self._utils.get_site_xpos(self.model, self.data, "grasp")
+
+ @property
+ def obj(self):
+ return self._utils.get_site_xpos(self.model, self.data, "object_site")
+
+ @property
+ def robot_state(self):
+ gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
+ return np.concatenate([self.eef, gripper_angle])
+
+ def is_success(self):
+ return NotImplementedError()
+
+ def get_reward(self):
+ raise NotImplementedError()
+
+ def _sample_goal(self):
+ raise NotImplementedError()
+
+ def get_obs(self):
+ return self._get_obs()
+
+ def _step_callback(self):
+ self.sim.forward()
+
+ def _limit_gripper(self, gripper_pos, pos_ctrl):
+ if gripper_pos[0] > self.center_of_table[0] - 0.105 + 0.15:
+ pos_ctrl[0] = min(pos_ctrl[0], 0)
+ if gripper_pos[0] < self.center_of_table[0] - 0.105 - 0.3:
+ pos_ctrl[0] = max(pos_ctrl[0], 0)
+ if gripper_pos[1] > self.center_of_table[1] + 0.3:
+ pos_ctrl[1] = min(pos_ctrl[1], 0)
+ if gripper_pos[1] < self.center_of_table[1] - 0.3:
+ pos_ctrl[1] = max(pos_ctrl[1], 0)
+ if gripper_pos[2] > self.max_z:
+ pos_ctrl[2] = min(pos_ctrl[2], 0)
+ if gripper_pos[2] < self.min_z:
+ pos_ctrl[2] = max(pos_ctrl[2], 0)
+ return pos_ctrl
+
+ def _apply_action(self, action):
+ assert action.shape == (4,)
+ action = action.copy()
+ pos_ctrl, gripper_ctrl = action[:3], action[3]
+ pos_ctrl = self._limit_gripper(
+ self._utils.get_site_xpos(self.model, self.data, "grasp"), pos_ctrl
+ ) * (1 / self.n_substeps)
+ gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl])
+ mocap.apply_action(self.sim, np.concatenate([pos_ctrl, self.gripper_rotation, gripper_ctrl]))
+
+ def _viewer_setup(self):
+ body_id = self.sim.model.body_name2id("link7")
+ lookat = self.sim.data.body_xpos[body_id]
+ for idx, value in enumerate(lookat):
+ self.viewer.cam.lookat[idx] = value
+ self.viewer.cam.distance = 4.0
+ self.viewer.cam.azimuth = 132.0
+ self.viewer.cam.elevation = -14.0
+
+ def _render_callback(self):
+ # self.sim.forward()
+ self._mujoco.mj_forward(self.model, self.data)
+
+ def _reset_sim(self):
+ # self.sim.set_state(self.initial_state)
+ self.data.time = self.initial_time
+ self.data.qpos[:] = np.copy(self.initial_qpos)
+ self.data.qvel[:] = np.copy(self.initial_qvel)
+ self._sample_goal()
+ for _ in range(10):
+ # self.sim.step()
+ self._mujoco.mj_forward(self.model, self.data)
+ return True
+
+ def _set_gripper(self, gripper_pos, gripper_rotation):
+ # self.data.set_mocap_pos('robot0:mocap2', gripper_pos)
+ # self.data.set_mocap_quat('robot0:mocap2', gripper_rotation)
+ # self.data.set_joint_qpos('right_outer_knuckle_joint', 0)
+ self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_pos)
+ # self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_rotation)
+ self._utils.set_mocap_quat(self.model, self.data, "robot0:mocap", gripper_rotation)
+ self._utils.set_joint_qpos(self.model, self.data, "right_outer_knuckle_joint", 0)
+ self.data.qpos[10] = 0.0
+ self.data.qpos[12] = 0.0
+
+ def _env_setup(self, initial_qpos):
+ for name, value in initial_qpos.items():
+ # self.sim.data.set_joint_qpos(name, value)
+ self.data.set_joint_qpos(name, value)
+ mocap.reset(self.model, self.data)
+ mujoco.mj_forward(self.model, self.data)
+ # self.sim.forward()
+ self._sample_goal()
+ # self.sim.forward()
+ mujoco.mj_forward(self.model, self.data)
+
+ def reset(self):
+ self._reset_sim()
+ return self._get_obs()
+
+ def step(self, action):
+ assert action.shape == (4,)
+ assert self.action_space.contains(action), "{!r} ({}) invalid".format(action, type(action))
+ self._apply_action(action)
+ for _ in range(2):
+ self.sim.step()
+ self._step_callback()
+ obs = self._get_obs()
+ reward = self.get_reward()
+ done = False
+ info = {"is_success": self.is_success(), "success": self.is_success()}
+ return obs, reward, done, info
+
+ def render(self, mode="rgb_array", width=384, height=384):
+ self._render_callback()
+ # if mode == 'rgb_array':
+ # return self.sim.render(width, height, camera_name='camera0', depth=False)[::-1, :, :]
+ # elif mode == "human":
+ # self._get_viewer(mode).render()
+ return self.mujoco_renderer.render(mode)
+
+ def close(self):
+ if self.viewer is not None:
+ # self.viewer.finish()
+ print("Closing window glfw")
+ glfw.destroy_window(self.viewer.window)
+ self.viewer = None
+ self._viewers = {}
diff --git a/lerobot/common/envs/simxarm/simxarm/task/lift.py b/lerobot/common/envs/simxarm/simxarm/task/lift.py
new file mode 100644
index 00000000..bd7fc500
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/lift.py
@@ -0,0 +1,101 @@
+import numpy as np
+
+from lerobot.common.envs.simxarm.simxarm import Base
+
+
+class Lift(Base):
+ def __init__(self):
+ self._z_threshold = 0.15
+ super().__init__("lift")
+
+ @property
+ def z_target(self):
+ return self._init_z + self._z_threshold
+
+ def is_success(self):
+ return self.obj[2] >= self.z_target
+
+ def get_reward(self):
+ reach_dist = np.linalg.norm(self.obj - self.eef)
+ reach_dist_xy = np.linalg.norm(self.obj[:-1] - self.eef[:-1])
+ pick_completed = self.obj[2] >= (self.z_target - 0.01)
+ obj_dropped = (self.obj[2] < (self._init_z + 0.005)) and (reach_dist > 0.02)
+
+ # Reach
+ if reach_dist < 0.05:
+ reach_reward = -reach_dist + max(self._action[-1], 0) / 50
+ elif reach_dist_xy < 0.05:
+ reach_reward = -reach_dist
+ else:
+ z_bonus = np.linalg.norm(np.linalg.norm(self.obj[-1] - self.eef[-1]))
+ reach_reward = -reach_dist - 2 * z_bonus
+
+ # Pick
+ if pick_completed and not obj_dropped:
+ pick_reward = self.z_target
+ elif (reach_dist < 0.1) and (self.obj[2] > (self._init_z + 0.005)):
+ pick_reward = min(self.z_target, self.obj[2])
+ else:
+ pick_reward = 0
+
+ return reach_reward / 100 + pick_reward
+
+ def _get_obs(self):
+ eef_velp = self._utils.get_site_xvelp(self.model, self.data, "grasp") * self.dt
+ gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
+ eef = self.eef - self.center_of_table
+
+ obj = self.obj - self.center_of_table
+ obj_rot = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")[-4:]
+ obj_velp = self._utils.get_site_xvelp(self.model, self.data, "object_site") * self.dt
+ obj_velr = self._utils.get_site_xvelr(self.model, self.data, "object_site") * self.dt
+
+ obs = np.concatenate(
+ [
+ eef,
+ eef_velp,
+ obj,
+ obj_rot,
+ obj_velp,
+ obj_velr,
+ eef - obj,
+ np.array(
+ [
+ np.linalg.norm(eef - obj),
+ np.linalg.norm(eef[:-1] - obj[:-1]),
+ self.z_target,
+ self.z_target - obj[-1],
+ self.z_target - eef[-1],
+ ]
+ ),
+ gripper_angle,
+ ],
+ axis=0,
+ )
+ return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": eef}
+
+ def _sample_goal(self):
+ # Gripper
+ gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
+ super()._set_gripper(gripper_pos, self.gripper_rotation)
+
+ # Object
+ object_pos = self.center_of_table - np.array([0.15, 0.10, 0.07])
+ object_pos[0] += self.np_random.uniform(-0.05, 0.05, size=1)
+ object_pos[1] += self.np_random.uniform(-0.05, 0.05, size=1)
+ object_qpos = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")
+ object_qpos[:3] = object_pos
+ # self.sim.data.set_joint_qpos('object_joint0', object_qpos)
+ self._utils.set_joint_qpos(self.model, self.data, "object_joint0", object_qpos)
+ self._init_z = object_pos[2]
+
+ # Goal
+ return object_pos + np.array([0, 0, self._z_threshold])
+
+ def reset(self):
+ self._action = np.zeros(4)
+ return super().reset()
+
+ def step(self, action):
+ self._action = action.copy()
+ return super().step(action)
diff --git a/lerobot/common/envs/simxarm/simxarm/task/mocap.py b/lerobot/common/envs/simxarm/simxarm/task/mocap.py
new file mode 100644
index 00000000..45722f13
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/mocap.py
@@ -0,0 +1,68 @@
+# import mujoco_py
+import mujoco
+import numpy as np
+
+
+def apply_action(sim, action):
+ if sim.model.nmocap > 0:
+ pos_action, gripper_action = np.split(action, (sim.model.nmocap * 7,))
+ if sim.data.ctrl is not None:
+ for i in range(gripper_action.shape[0]):
+ sim.data.ctrl[i] = gripper_action[i]
+ pos_action = pos_action.reshape(sim.model.nmocap, 7)
+ pos_delta, quat_delta = pos_action[:, :3], pos_action[:, 3:]
+ reset_mocap2body_xpos(sim)
+ sim.data.mocap_pos[:] = sim.data.mocap_pos + pos_delta
+ sim.data.mocap_quat[:] = sim.data.mocap_quat + quat_delta
+
+
+def reset(model, data):
+ if model.nmocap > 0 and model.eq_data is not None:
+ for i in range(model.eq_data.shape[0]):
+ # if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD:
+ if model.eq_type[i] == mujoco.mjtEq.mjEQ_WELD:
+ # model.eq_data[i, :] = np.array([0., 0., 0., 1., 0., 0., 0.])
+ model.eq_data[i, :] = np.array(
+ [
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ ]
+ )
+ # sim.forward()
+ mujoco.mj_forward(model, data)
+
+
+def reset_mocap2body_xpos(sim):
+ if sim.model.eq_type is None or sim.model.eq_obj1id is None or sim.model.eq_obj2id is None:
+ return
+
+ # For all weld constraints
+ for eq_type, obj1_id, obj2_id in zip(
+ sim.model.eq_type, sim.model.eq_obj1id, sim.model.eq_obj2id, strict=False
+ ):
+ # if eq_type != mujoco_py.const.EQ_WELD:
+ if eq_type != mujoco.mjtEq.mjEQ_WELD:
+ continue
+ body2 = sim.model.body_id2name(obj2_id)
+ if body2 == "B0" or body2 == "B9" or body2 == "B1":
+ continue
+ mocap_id = sim.model.body_mocapid[obj1_id]
+ if mocap_id != -1:
+ # obj1 is the mocap, obj2 is the welded body
+ body_idx = obj2_id
+ else:
+ # obj2 is the mocap, obj1 is the welded body
+ mocap_id = sim.model.body_mocapid[obj2_id]
+ body_idx = obj1_id
+ assert mocap_id != -1
+ sim.data.mocap_pos[mocap_id][:] = sim.data.body_xpos[body_idx]
+ sim.data.mocap_quat[mocap_id][:] = sim.data.body_xquat[body_idx]
diff --git a/lerobot/common/envs/simxarm/simxarm/task/peg_in_box.py b/lerobot/common/envs/simxarm/simxarm/task/peg_in_box.py
new file mode 100644
index 00000000..42e41520
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/peg_in_box.py
@@ -0,0 +1,86 @@
+import numpy as np
+
+from lerobot.common.envs.simxarm.simxarm import Base
+
+
+class PegInBox(Base):
+ def __init__(self):
+ super().__init__("peg_in_box")
+
+ def _reset_sim(self):
+ self._act_magnitude = 0
+ super()._reset_sim()
+ for _ in range(10):
+ self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
+ self.sim.step()
+
+ @property
+ def box(self):
+ return self.sim.data.get_site_xpos("box_site")
+
+ def is_success(self):
+ return np.linalg.norm(self.obj - self.box) <= 0.05
+
+ def get_reward(self):
+ dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
+ dist_xyz = np.linalg.norm(self.obj - self.box)
+ return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
+
+ def _get_obs(self):
+ eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
+ gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
+ eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
+
+ obj = self.obj - self.center_of_table
+ obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
+ obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
+ obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
+
+ obs = np.concatenate(
+ [
+ eef,
+ eef_velp,
+ box,
+ obj,
+ obj_rot,
+ obj_velp,
+ obj_velr,
+ eef - box,
+ eef - obj,
+ obj - box,
+ np.array(
+ [
+ np.linalg.norm(eef - box),
+ np.linalg.norm(eef - obj),
+ np.linalg.norm(obj - box),
+ gripper_angle,
+ ]
+ ),
+ ],
+ axis=0,
+ )
+ return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
+
+ def _sample_goal(self):
+ # Gripper
+ gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
+ super()._set_gripper(gripper_pos, self.gripper_rotation)
+
+ # Object
+ object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
+ object_qpos = self.sim.data.get_joint_qpos("object_joint0")
+ object_qpos[:3] = object_pos
+ self.sim.data.set_joint_qpos("object_joint0", object_qpos)
+
+ # Box
+ box_pos = np.array([1.61, 0.18, 0.58])
+ box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
+ box_qpos = self.sim.data.get_joint_qpos("box_joint0")
+ box_qpos[:3] = box_pos
+ self.sim.data.set_joint_qpos("box_joint0", box_qpos)
+
+ return self.box
+
+ def step(self, action):
+ self._act_magnitude = np.linalg.norm(action[:3])
+ return super().step(action)
diff --git a/lerobot/common/envs/simxarm/simxarm/task/push.py b/lerobot/common/envs/simxarm/simxarm/task/push.py
new file mode 100644
index 00000000..36c4a550
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/push.py
@@ -0,0 +1,78 @@
+import numpy as np
+
+from lerobot.common.envs.simxarm.simxarm import Base
+
+
+class Push(Base):
+ def __init__(self):
+ super().__init__("push")
+
+ def _reset_sim(self):
+ self._act_magnitude = 0
+ super()._reset_sim()
+
+ def is_success(self):
+ return np.linalg.norm(self.obj - self.goal) <= 0.05
+
+ def get_reward(self):
+ dist = np.linalg.norm(self.obj - self.goal)
+ penalty = self._act_magnitude**2
+ return -(dist + 0.15 * penalty)
+
+ def _get_obs(self):
+ eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
+ gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
+ eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
+
+ obj = self.obj - self.center_of_table
+ obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
+ obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
+ obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
+
+ obs = np.concatenate(
+ [
+ eef,
+ eef_velp,
+ goal,
+ obj,
+ obj_rot,
+ obj_velp,
+ obj_velr,
+ eef - goal,
+ eef - obj,
+ obj - goal,
+ np.array(
+ [
+ np.linalg.norm(eef - goal),
+ np.linalg.norm(eef - obj),
+ np.linalg.norm(obj - goal),
+ gripper_angle,
+ ]
+ ),
+ ],
+ axis=0,
+ )
+ return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
+
+ def _sample_goal(self):
+ # Gripper
+ gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
+ super()._set_gripper(gripper_pos, self.gripper_rotation)
+
+ # Object
+ object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
+ object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
+ object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
+ object_qpos = self.sim.data.get_joint_qpos("object_joint0")
+ object_qpos[:3] = object_pos
+ self.sim.data.set_joint_qpos("object_joint0", object_qpos)
+
+ # Goal
+ self.goal = np.array([1.600, 0.200, 0.545])
+ self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
+ self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
+ return self.goal
+
+ def step(self, action):
+ self._act_magnitude = np.linalg.norm(action[:3])
+ return super().step(action)
diff --git a/lerobot/common/envs/simxarm/simxarm/task/reach.py b/lerobot/common/envs/simxarm/simxarm/task/reach.py
new file mode 100644
index 00000000..941a586f
--- /dev/null
+++ b/lerobot/common/envs/simxarm/simxarm/task/reach.py
@@ -0,0 +1,44 @@
+import numpy as np
+
+from lerobot.common.envs.simxarm.simxarm import Base
+
+
+class Reach(Base):
+ def __init__(self):
+ super().__init__("reach")
+
+ def _reset_sim(self):
+ self._act_magnitude = 0
+ super()._reset_sim()
+
+ def is_success(self):
+ return np.linalg.norm(self.eef - self.goal) <= 0.05
+
+ def get_reward(self):
+ dist = np.linalg.norm(self.eef - self.goal)
+ penalty = self._act_magnitude**2
+ return -(dist + 0.15 * penalty)
+
+ def _get_obs(self):
+ eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
+ gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
+ eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
+ obs = np.concatenate(
+ [eef, eef_velp, goal, eef - goal, np.array([np.linalg.norm(eef - goal), gripper_angle])], axis=0
+ )
+ return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
+
+ def _sample_goal(self):
+ # Gripper
+ gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
+ super()._set_gripper(gripper_pos, self.gripper_rotation)
+
+ # Goal
+ self.goal = np.array([1.550, 0.287, 0.580])
+ self.goal[:2] += self.np_random.uniform(-0.125, 0.125, size=2)
+ self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
+ return self.goal
+
+ def step(self, action):
+ self._act_magnitude = np.linalg.norm(action[:3])
+ return super().step(action)
diff --git a/lerobot/configs/policy/tdmpc.yaml b/lerobot/configs/policy/tdmpc.yaml
index 16b7018e..ff0e6b04 100644
--- a/lerobot/configs/policy/tdmpc.yaml
+++ b/lerobot/configs/policy/tdmpc.yaml
@@ -1,6 +1,7 @@
# @package _global_
n_action_steps: 1
+n_obs_steps: 1
policy:
name: tdmpc
diff --git a/poetry.lock b/poetry.lock
index d2d39e7a..8bfdeb9b 100644
--- a/poetry.lock
+++ b/poetry.lock
@@ -338,73 +338,6 @@ files = [
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
-[[package]]
-name = "cython"
-version = "3.0.9"
-description = "The Cython compiler for writing C extensions in the Python language."
-optional = false
-python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
-files = [
- {file = "Cython-3.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:296bd30d4445ac61b66c9d766567f6e81a6e262835d261e903c60c891a6729d3"},
- {file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f496b52845cb45568a69d6359a2c335135233003e708ea02155c10ce3548aa89"},
- {file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:858c3766b9aa3ab8a413392c72bbab1c144a9766b7c7bfdef64e2e414363fa0c"},
- {file = "Cython-3.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c0eb1e6ef036028a52525fd9a012a556f6dd4788a0e8755fe864ba0e70cde2ff"},
- {file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c8191941073ea5896321de3c8c958fd66e5f304b0cd1f22c59edd0b86c4dd90d"},
- {file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e32b016030bc72a8a22a1f21f470a2f57573761a4f00fbfe8347263f4fbdb9f1"},
- {file = "Cython-3.0.9-cp310-cp310-win32.whl", hash = "sha256:d6f3ff1cd6123973fe03e0fb8ee936622f976c0c41138969975824d08886572b"},
- {file = "Cython-3.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:56f3b643dbe14449248bbeb9a63fe3878a24256664bc8c8ef6efd45d102596d8"},
- {file = "Cython-3.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:35e6665a20d6b8a152d72b7fd87dbb2af6bb6b18a235b71add68122d594dbd41"},
- {file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92f4960c40ad027bd8c364c50db11104eadc59ffeb9e5b7f605ca2f05946e20"},
- {file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38df37d0e732fbd9a2fef898788492e82b770c33d1e4ed12444bbc8a3b3f89c0"},
- {file = "Cython-3.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad7fd88ebaeaf2e76fd729a8919fae80dab3d6ac0005e28494261d52ff347a8f"},
- {file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1365d5f76bf4d19df3d19ce932584c9bb76e9fb096185168918ef9b36e06bfa4"},
- {file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c232e7f279388ac9625c3e5a5a9f0078a9334959c5d6458052c65bbbba895e1e"},
- {file = "Cython-3.0.9-cp311-cp311-win32.whl", hash = "sha256:357e2fad46a25030b0c0496487e01a9dc0fdd0c09df0897f554d8ba3c1bc4872"},
- {file = "Cython-3.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:1315aee506506e8d69cf6631d8769e6b10131fdcc0eb66df2698f2a3ddaeeff2"},
- {file = "Cython-3.0.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:157973807c2796addbed5fbc4d9c882ab34bbc60dc297ca729504901479d5df7"},
- {file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00b105b5d050645dd59e6767bc0f18b48a4aa11c85f42ec7dd8181606f4059e3"},
- {file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac5536d09bef240cae0416d5a703d298b74c7bbc397da803ac9d344e732d4369"},
- {file = "Cython-3.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09c44501d476d16aaa4cbc29c87f8c0f54fc20e69b650d59cbfa4863426fc70c"},
- {file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cc9c3b9f20d8e298618e5ccd32083ca386e785b08f9893fbec4c50b6b85be772"},
- {file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a30d96938c633e3ec37000ac3796525da71254ef109e66bdfd78f29891af6454"},
- {file = "Cython-3.0.9-cp312-cp312-win32.whl", hash = "sha256:757ca93bdd80702546df4d610d2494ef2e74249cac4d5ba9464589fb464bd8a3"},
- {file = "Cython-3.0.9-cp312-cp312-win_amd64.whl", hash = "sha256:1dc320a9905ab95414013f6de805efbff9e17bb5fb3b90bbac533f017bec8136"},
- {file = "Cython-3.0.9-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4ae349960ebe0da0d33724eaa7f1eb866688fe5434cc67ce4dbc06d6a719fbfc"},
- {file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63d2537bf688247f76ded6dee28ebd26274f019309aef1eb4f2f9c5c482fde2d"},
- {file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f5a2dfc724bea1f710b649f02d802d80fc18320c8e6396684ba4a48412445a"},
- {file = "Cython-3.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:deaf4197d4b0bcd5714a497158ea96a2bd6d0f9636095437448f7e06453cc83d"},
- {file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:000af6deb7412eb7ac0c635ff5e637fb8725dd0a7b88cc58dfc2b3de14e701c4"},
- {file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:15c7f5c2d35bed9aa5f2a51eaac0df23ae72f2dbacf62fc672dd6bfaa75d2d6f"},
- {file = "Cython-3.0.9-cp36-cp36m-win32.whl", hash = "sha256:f49aa4970cd3bec66ac22e701def16dca2a49c59cceba519898dd7526e0be2c0"},
- {file = "Cython-3.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:4558814fa025b193058d42eeee498a53d6b04b2980d01339fc2444b23fd98e58"},
- {file = "Cython-3.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:539cd1d74fd61f6cfc310fa6bbbad5adc144627f2b7486a07075d4e002fd6aad"},
- {file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3232926cd406ee02eabb732206f6e882c3aed9d58f0fea764013d9240405bcf"},
- {file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b6ac376538a7fc8c567b85d3c71504308a9318702ec0485dd66c059f3165cb"},
- {file = "Cython-3.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2cc92504b5d22ac66031ffb827bd3a967fc75a5f0f76ab48bce62df19be6fdfd"},
- {file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:22b8fae756c5c0d8968691bed520876de452f216c28ec896a00739a12dba3bd9"},
- {file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9cda0d92a09f3520f29bd91009f1194ba9600777c02c30c6d2d4ac65fb63e40d"},
- {file = "Cython-3.0.9-cp37-cp37m-win32.whl", hash = "sha256:ec612418490941ed16c50c8d3784c7bdc4c4b2a10c361259871790b02ec8c1db"},
- {file = "Cython-3.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:976c8d2bedc91ff6493fc973d38b2dc01020324039e2af0e049704a8e1b22936"},
- {file = "Cython-3.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5055988b007c92256b6e9896441c3055556038c3497fcbf8c921a6c1fce90719"},
- {file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9360606d964c2d0492a866464efcf9d0a92715644eede3f6a2aa696de54a137"},
- {file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c6e809f060bed073dc7cba1648077fe3b68208863d517c8b39f3920eecf9dd"},
- {file = "Cython-3.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95ed792c966f969cea7489c32ff90150b415c1f3567db8d5a9d489c7c1602dac"},
- {file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8edd59d22950b400b03ca78d27dc694d2836a92ef0cac4f64cb4b2ff902f7e25"},
- {file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4cf0ed273bf60e97922fcbbdd380c39693922a597760160b4b4355e6078ca188"},
- {file = "Cython-3.0.9-cp38-cp38-win32.whl", hash = "sha256:5eb9bd4ae12ebb2bc79a193d95aacf090fbd8d7013e11ed5412711650cb34934"},
- {file = "Cython-3.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:44457279da56e0f829bb1fc5a5dc0836e5d498dbcf9b2324f32f7cc9d2ec6569"},
- {file = "Cython-3.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4b419a1adc2af43f4660e2f6eaf1e4fac2dbac59490771eb8ac3d6063f22356"},
- {file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f836192140f033b2319a0128936367c295c2b32e23df05b03b672a6015757ea"},
- {file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fd198c1a7f8e9382904d622cc0efa3c184605881fd5262c64cbb7168c4c1ec5"},
- {file = "Cython-3.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a274fe9ca5c53fafbcf5c8f262f8ad6896206a466f0eeb40aaf36a7951e957c0"},
- {file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:158c38360bbc5063341b1e78d3737f1251050f89f58a3df0d10fb171c44262be"},
- {file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8bf30b045f7deda0014b042c1b41c1d272facc762ab657529e3b05505888e878"},
- {file = "Cython-3.0.9-cp39-cp39-win32.whl", hash = "sha256:9a001fd95c140c94d934078544ff60a3c46aca2dc86e75a76e4121d3cd1f4b33"},
- {file = "Cython-3.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:530c01c4aebba709c0ec9c7ecefe07177d0b9fd7ffee29450a118d92192ccbdf"},
- {file = "Cython-3.0.9-py2.py3-none-any.whl", hash = "sha256:bf96417714353c5454c2e3238fca9338599330cf51625cdc1ca698684465646f"},
- {file = "Cython-3.0.9.tar.gz", hash = "sha256:a2d354f059d1f055d34cfaa62c5b68bc78ac2ceab6407148d47fb508cf3ba4f3"},
-]
-
[[package]]
name = "debugpy"
version = "1.8.1"
@@ -639,6 +572,17 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
+[[package]]
+name = "farama-notifications"
+version = "0.0.4"
+description = "Notifications for all Farama Foundation maintained libraries."
+optional = false
+python-versions = "*"
+files = [
+ {file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
+ {file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
+]
+
[[package]]
name = "fasteners"
version = "0.19"
@@ -877,6 +821,59 @@ files = [
{file = "gym_notices-0.0.8-py3-none-any.whl", hash = "sha256:e5f82e00823a166747b4c2a07de63b6560b1acb880638547e0cabf825a01e463"},
]
+[[package]]
+name = "gymnasium"
+version = "0.29.1"
+description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
+ {file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
+]
+
+[package.dependencies]
+cloudpickle = ">=1.2.0"
+farama-notifications = ">=0.0.1"
+numpy = ">=1.21.0"
+typing-extensions = ">=4.3.0"
+
+[package.extras]
+accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
+all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
+atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
+box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
+classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
+jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
+mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
+mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
+other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
+testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
+toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
+
+[[package]]
+name = "gymnasium-robotics"
+version = "1.2.4"
+description = "Robotics environments for the Gymnasium repo."
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "gymnasium-robotics-1.2.4.tar.gz", hash = "sha256:d304192b066f8b800599dfbe3d9d90bba9b761ee884472bdc4d05968a8bc61cb"},
+ {file = "gymnasium_robotics-1.2.4-py3-none-any.whl", hash = "sha256:c2cb23e087ca0280ae6802837eb7b3a6d14e5bd24c00803ab09f015fcff3eef5"},
+]
+
+[package.dependencies]
+gymnasium = ">=0.26"
+imageio = "*"
+Jinja2 = ">=3.0.3"
+mujoco = ">=2.3.3,<3.0"
+numpy = ">=1.21.0"
+PettingZoo = ">=1.23.0"
+
+[package.extras]
+mujoco-py = ["cython (<3)", "mujoco-py (>=2.1,<2.2)"]
+testing = ["Jinja2 (>=3.0.3)", "PettingZoo (>=1.23.0)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "pytest (==7.0.1)"]
+
[[package]]
name = "h5py"
version = "3.10.0"
@@ -1506,25 +1503,6 @@ glfw = "*"
numpy = "*"
pyopengl = "*"
-[[package]]
-name = "mujoco-py"
-version = "2.1.2.14"
-description = ""
-optional = false
-python-versions = ">=3.6"
-files = [
- {file = "mujoco-py-2.1.2.14.tar.gz", hash = "sha256:eb5b14485acf80a3cf8c15f4b080c6a28a9f79e68869aa696d16cbd51ea7706f"},
- {file = "mujoco_py-2.1.2.14-py3-none-any.whl", hash = "sha256:37c0b41bc0153a8a0eb3663103a67c60f65467753f74e4ff6e68b879f3e3a71f"},
-]
-
-[package.dependencies]
-cffi = ">=1.10"
-Cython = ">=0.27.2"
-fasteners = ">=0.15,<1.0"
-glfw = ">=1.4.0"
-imageio = ">=2.1.2"
-numpy = ">=1.11"
-
[[package]]
name = "networkx"
version = "3.2.1"
@@ -1940,6 +1918,31 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.9.2)"]
+[[package]]
+name = "pettingzoo"
+version = "1.24.3"
+description = "Gymnasium for multi-agent reinforcement learning."
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "pettingzoo-1.24.3-py3-none-any.whl", hash = "sha256:23ed90517d2e8a7098bdaf5e31234b3a7f7b73ca578d70d1ca7b9d0cb0e37982"},
+ {file = "pettingzoo-1.24.3.tar.gz", hash = "sha256:91f9094f18e06fb74b98f4099cd22e8ae4396125e51719d50b30c9f1c7ab07e6"},
+]
+
+[package.dependencies]
+gymnasium = ">=0.28.0"
+numpy = ">=1.21.0"
+
+[package.extras]
+all = ["box2d-py (==2.3.5)", "chess (==1.9.4)", "multi-agent-ale-py (==0.1.11)", "pillow (>=8.0.1)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "rlcard (==1.0.5)", "scipy (>=1.4.1)", "shimmy[openspiel] (>=1.2.0)"]
+atari = ["multi-agent-ale-py (==0.1.11)", "pygame (==2.3.0)"]
+butterfly = ["pygame (==2.3.0)", "pymunk (==6.2.0)"]
+classic = ["chess (==1.9.4)", "pygame (==2.3.0)", "rlcard (==1.0.5)", "shimmy[openspiel] (>=1.2.0)"]
+mpe = ["pygame (==2.3.0)"]
+other = ["pillow (>=8.0.1)"]
+sisl = ["box2d-py (==2.3.5)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "scipy (>=1.4.1)"]
+testing = ["AutoROM", "pre-commit", "pynput", "pytest", "pytest-cov", "pytest-markdown-docs", "pytest-xdist"]
+
[[package]]
name = "pillow"
version = "10.2.0"
@@ -3510,4 +3513,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
-content-hash = "1a45c808e1c48bcbf4319d4cf6876771b7d50f40a5a8968a8b7f3af36192bf34"
+content-hash = "abe6fc1c5b99d6f51f2efb0adda0e7cd1fcfe7b2d789879dafa441869e555745"
diff --git a/pyproject.toml b/pyproject.toml
index 7e9996a0..5f6c9456 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -21,7 +21,6 @@ packages = [{include = "lerobot"}]
[tool.poetry.dependencies]
python = "^3.10"
-cython = "^3.0.8"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
dm-env = "^1.6"
@@ -43,7 +42,6 @@ torch = "^2.2.1"
tensordict = {git = "https://github.com/pytorch/tensordict"}
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
mujoco = "2.3.7"
-mujoco-py = "^2.1.2.14"
gym = "^0.26.2"
opencv-python = "^4.9.0.80"
diffusers = "^0.26.3"
@@ -52,6 +50,7 @@ h5py = "^3.10.0"
dm-control = "1.0.14"
huggingface-hub = {extras = ["hf-transfer"], version = "^0.21.4"}
robomimic = "0.2.0"
+gymnasium-robotics = "^1.2.4"
[tool.poetry.group.dev.dependencies]
diff --git a/tests/test_envs.py b/tests/test_envs.py
index 7776ba3c..8931cf52 100644
--- a/tests/test_envs.py
+++ b/tests/test_envs.py
@@ -7,7 +7,7 @@ from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.pusht.env import PushtEnv
-from lerobot.common.envs.simxarm import SimxarmEnv
+from lerobot.common.envs.simxarm.env import SimxarmEnv
from .utils import DEVICE, init_config