|
|
|
@ -0,0 +1,973 @@
|
|
|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models
|
|
|
|
|
|
|
|
|
|
[Paper](https://arxiv.org/abs/2501.09747)
|
|
|
|
|
[Jax code](https://github.com/Physical-Intelligence/openpi)
|
|
|
|
|
|
|
|
|
|
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
|
|
|
|
|
|
|
|
|
|
Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`):
|
|
|
|
|
```bash
|
|
|
|
|
python lerobot/scripts/train.py \
|
|
|
|
|
--policy.path=lerobot/pi0fast_base \
|
|
|
|
|
--dataset.repo_id=danaaubakirova/koch_test
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Example of training the pi0+FAST neural network with from scratch:
|
|
|
|
|
```bash
|
|
|
|
|
python lerobot/scripts/train.py \
|
|
|
|
|
--policy.type=pi0fast \
|
|
|
|
|
--dataset.repo_id=danaaubakirova/koch_test
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Example of using the pi0 pretrained model outside LeRobot training framework:
|
|
|
|
|
```python
|
|
|
|
|
policy = PI0FASTPolicy.from_pretrained("lerobot/pi0fast_base")
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from collections import deque
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F # noqa: N812
|
|
|
|
|
from PIL import Image
|
|
|
|
|
from scipy.fft import idct
|
|
|
|
|
from torch import Tensor, nn
|
|
|
|
|
from transformers import AutoProcessor, AutoTokenizer, PaliGemmaForConditionalGeneration
|
|
|
|
|
from transformers.cache_utils import HybridCache, StaticCache
|
|
|
|
|
from transformers.models.auto import CONFIG_MAPPING
|
|
|
|
|
|
|
|
|
|
from lerobot.common.constants import ACTION, OBS_ROBOT
|
|
|
|
|
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
|
|
|
|
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
|
|
|
|
|
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
|
|
|
|
|
|
|
|
|
PRECISION = {
|
|
|
|
|
"float16": torch.float16,
|
|
|
|
|
"float32": torch.float32,
|
|
|
|
|
"bfloat16": torch.bfloat16,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize(x, min_val, max_val):
|
|
|
|
|
return (x - min_val) / (max_val - min_val)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unnormalize(x, min_val, max_val):
|
|
|
|
|
return x * (max_val - min_val) + min_val
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def safe_arcsin(value):
|
|
|
|
|
# This ensures that the input stays within
|
|
|
|
|
# [−1,1] to avoid invalid values for arcsin
|
|
|
|
|
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def aloha_gripper_to_angular(value):
|
|
|
|
|
# Aloha transforms the gripper positions into a linear space. The following code
|
|
|
|
|
# reverses this transformation to be consistent with pi0 which is pretrained in
|
|
|
|
|
# angular space.
|
|
|
|
|
#
|
|
|
|
|
# These values are coming from the Aloha code:
|
|
|
|
|
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
|
|
|
|
|
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
|
|
|
|
|
|
|
|
|
|
# This is the inverse of the angular to linear transformation inside the Interbotix code.
|
|
|
|
|
def linear_to_radian(linear_position, arm_length, horn_radius):
|
|
|
|
|
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
|
|
|
|
|
return safe_arcsin(value)
|
|
|
|
|
|
|
|
|
|
# The constants are taken from the Interbotix code.
|
|
|
|
|
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
|
|
|
|
|
|
|
|
|
|
# Normalize to [0, 1].
|
|
|
|
|
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
|
|
|
|
|
return normalize(value, min_val=0.4, max_val=1.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def aloha_gripper_from_angular(value):
|
|
|
|
|
# Convert from the gripper position used by pi0 to the gripper position that is used by Aloha.
|
|
|
|
|
# Note that the units are still angular but the range is different.
|
|
|
|
|
|
|
|
|
|
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
|
|
|
|
|
value = unnormalize(value, min_val=0.4, max_val=1.5)
|
|
|
|
|
|
|
|
|
|
# These values are coming from the Aloha code:
|
|
|
|
|
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
|
|
|
|
|
return normalize(value, min_val=-0.6213, max_val=1.4910)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def aloha_gripper_from_angular_inv(value):
|
|
|
|
|
# Directly inverts the gripper_from_angular function.
|
|
|
|
|
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
|
|
|
|
|
return normalize(value, min_val=0.4, max_val=1.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PI0FASTPolicy(PreTrainedPolicy):
|
|
|
|
|
"""Wrapper class around PI0FAST tokenizer and model to train and run inference within LeRobot."""
|
|
|
|
|
|
|
|
|
|
config_class = PI0FASTConfig
|
|
|
|
|
name = "pi0fast"
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
config: PI0FASTConfig,
|
|
|
|
|
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Args:
|
|
|
|
|
config: Policy configuration class instance or None, in which case the default instantiation of
|
|
|
|
|
the configuration class is used.
|
|
|
|
|
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
|
|
|
|
|
that they will be passed with a call to `load_state_dict` before the policy is used.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
super().__init__(config)
|
|
|
|
|
config.validate_features()
|
|
|
|
|
self.config = config
|
|
|
|
|
|
|
|
|
|
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
|
|
|
|
|
self.normalize_targets = Normalize(
|
|
|
|
|
config.output_features, config.normalization_mapping, dataset_stats
|
|
|
|
|
)
|
|
|
|
|
self.unnormalize_outputs = Unnormalize(
|
|
|
|
|
config.output_features, config.normalization_mapping, dataset_stats
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.language_tokenizer = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
|
|
|
|
|
self.model = PI0FAST(config)
|
|
|
|
|
|
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
|
"""This should be called whenever the environment is reset."""
|
|
|
|
|
self._action_queue = deque([], maxlen=self.config.n_action_steps)
|
|
|
|
|
|
|
|
|
|
def get_optim_params(self) -> dict:
|
|
|
|
|
return self.parameters()
|
|
|
|
|
|
|
|
|
|
def _pi_aloha_decode_state(self, state):
|
|
|
|
|
# Flip the joints.
|
|
|
|
|
for motor_idx in [1, 2, 8, 9]:
|
|
|
|
|
state[:, motor_idx] *= -1
|
|
|
|
|
# Reverse the gripper transformation that is being applied by the Aloha runtime.
|
|
|
|
|
for motor_idx in [6, 13]:
|
|
|
|
|
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
|
|
|
|
|
return state
|
|
|
|
|
|
|
|
|
|
def _pi_aloha_encode_actions(self, actions):
|
|
|
|
|
# Flip the joints.
|
|
|
|
|
for motor_idx in [1, 2, 8, 9]:
|
|
|
|
|
actions[:, :, motor_idx] *= -1
|
|
|
|
|
# Reverse the gripper transformation that is being applied by the Aloha runtime.
|
|
|
|
|
for motor_idx in [6, 13]:
|
|
|
|
|
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
|
|
|
|
|
return actions
|
|
|
|
|
|
|
|
|
|
def _pi_aloha_encode_actions_inv(self, actions):
|
|
|
|
|
# Flip the joints again.
|
|
|
|
|
for motor_idx in [1, 2, 8, 9]:
|
|
|
|
|
actions[:, :, motor_idx] *= -1
|
|
|
|
|
# Reverse the gripper transformation that is being applied by the Aloha runtime.
|
|
|
|
|
for motor_idx in [6, 13]:
|
|
|
|
|
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
|
|
|
|
|
return actions
|
|
|
|
|
|
|
|
|
|
@torch.no_grad
|
|
|
|
|
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
|
|
|
|
"""Select a single action given environment observations.
|
|
|
|
|
|
|
|
|
|
This method wraps `select_actions` in order to return one action at a time for execution in the
|
|
|
|
|
environment. It works by managing the actions in a queue and only calling `select_actions` when the
|
|
|
|
|
queue is empty.
|
|
|
|
|
"""
|
|
|
|
|
self.eval()
|
|
|
|
|
|
|
|
|
|
if self.config.adapt_to_pi_aloha:
|
|
|
|
|
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
|
|
|
|
|
|
|
|
|
batch = self.normalize_inputs(batch)
|
|
|
|
|
|
|
|
|
|
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
|
|
|
|
|
# querying the policy.
|
|
|
|
|
if len(self._action_queue) == 0:
|
|
|
|
|
actions = self.model.generate_actions(batch)
|
|
|
|
|
|
|
|
|
|
actions = actions[:, : self.config.n_action_steps]
|
|
|
|
|
|
|
|
|
|
original_action_dim = self.config.action_feature.shape[
|
|
|
|
|
0
|
|
|
|
|
] # self.config.max_action_dim # self.config.action_feature.shape[0]
|
|
|
|
|
actions = actions[:, :, :original_action_dim]
|
|
|
|
|
|
|
|
|
|
actions = self.unnormalize_outputs({"action": actions})["action"]
|
|
|
|
|
|
|
|
|
|
if self.config.adapt_to_pi_aloha:
|
|
|
|
|
actions = self._pi_aloha_encode_actions(actions)
|
|
|
|
|
|
|
|
|
|
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
|
|
|
|
|
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
|
|
|
|
|
self._action_queue.extend(actions.transpose(0, 1))
|
|
|
|
|
return self._action_queue.popleft()
|
|
|
|
|
|
|
|
|
|
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
|
|
|
|
if self.config.adapt_to_pi_aloha:
|
|
|
|
|
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
|
|
|
|
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
|
|
|
|
|
batch = self.normalize_inputs(batch)
|
|
|
|
|
batch = self.normalize_targets(batch)
|
|
|
|
|
loss_dict = self.model.forward(batch)
|
|
|
|
|
return loss_dict["loss"], loss_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def block_causal_update_causal_mask(
|
|
|
|
|
attention_mask,
|
|
|
|
|
token_type_ids=None,
|
|
|
|
|
past_key_values=None,
|
|
|
|
|
cache_position=None,
|
|
|
|
|
input_tensor=None,
|
|
|
|
|
attn_implementation: str = "eager",
|
|
|
|
|
dtype: torch.dtype = "float32",
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Update the causal mask during training and generation. It can be customized to different attention masks.
|
|
|
|
|
"""
|
|
|
|
|
if attn_implementation == "flash_attention_2":
|
|
|
|
|
if attention_mask is not None and 0.0 in attention_mask:
|
|
|
|
|
return attention_mask
|
|
|
|
|
return None
|
|
|
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
|
|
min_dtype = torch.finfo(dtype).min
|
|
|
|
|
|
|
|
|
|
if input_tensor is None:
|
|
|
|
|
input_tensor = attention_mask
|
|
|
|
|
|
|
|
|
|
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
|
|
|
|
|
|
|
|
|
|
if using_static_cache or isinstance(past_key_values, HybridCache):
|
|
|
|
|
target_length = past_key_values.get_max_cache_shape()
|
|
|
|
|
else:
|
|
|
|
|
target_length = (
|
|
|
|
|
attention_mask.shape[-1]
|
|
|
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
|
|
|
else cache_position[0] + sequence_length + 1
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Handle precomputed attention masks
|
|
|
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
|
|
|
return attention_mask
|
|
|
|
|
|
|
|
|
|
# Causal mask initialization
|
|
|
|
|
causal_mask = torch.full(
|
|
|
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Standard causal masking (triu ensures tokens can only attend to past)
|
|
|
|
|
if sequence_length != 1:
|
|
|
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
|
|
|
|
|
|
|
|
# Apply block causal mask
|
|
|
|
|
if token_type_ids is not None:
|
|
|
|
|
token_type_ids = token_type_ids.to(causal_mask.device).bool()
|
|
|
|
|
cumsum = torch.cumsum(token_type_ids, dim=1)
|
|
|
|
|
block_causal_mask = cumsum[:, None, :] <= cumsum[:, :, None]
|
|
|
|
|
|
|
|
|
|
# Combine causal_mask with block-wise attention mask
|
|
|
|
|
causal_mask = torch.where(block_causal_mask, 0.0, causal_mask)
|
|
|
|
|
causal_mask = causal_mask[:, None, :, :]
|
|
|
|
|
else:
|
|
|
|
|
# Apply past cache position constraint
|
|
|
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
|
|
|
|
-1, 1
|
|
|
|
|
)
|
|
|
|
|
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
|
|
|
|
|
else:
|
|
|
|
|
# Apply past cache position constraint
|
|
|
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
|
|
|
|
-1, 1
|
|
|
|
|
)
|
|
|
|
|
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
causal_mask = causal_mask.clone() # Copy to contiguous memory for in-place edits
|
|
|
|
|
mask_length = attention_mask.shape[-1]
|
|
|
|
|
|
|
|
|
|
# Apply padding mask
|
|
|
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
|
|
|
|
causal_mask.device
|
|
|
|
|
)
|
|
|
|
|
padding_mask = padding_mask == 0
|
|
|
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
|
|
|
padding_mask, min_dtype
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
|
|
# self,
|
|
|
|
|
input_ids,
|
|
|
|
|
past_key_values=None,
|
|
|
|
|
inputs_embeds=None,
|
|
|
|
|
cache_position=None,
|
|
|
|
|
position_ids=None,
|
|
|
|
|
pixel_values=None,
|
|
|
|
|
attention_mask=None,
|
|
|
|
|
token_type_ids=None,
|
|
|
|
|
use_cache=True,
|
|
|
|
|
num_logits_to_keep=None,
|
|
|
|
|
labels=None,
|
|
|
|
|
self=None,
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
# create block causal attention
|
|
|
|
|
if cache_position[0] > 0 and input_ids.shape[1] > 0:
|
|
|
|
|
input_tensor = input_ids[:, -1:]
|
|
|
|
|
new_positions = (
|
|
|
|
|
torch.ones(
|
|
|
|
|
(position_ids.shape[0], input_ids.shape[1]),
|
|
|
|
|
dtype=position_ids.dtype,
|
|
|
|
|
device=position_ids.device,
|
|
|
|
|
).cumsum(-1)
|
|
|
|
|
+ position_ids[:, -1:]
|
|
|
|
|
)
|
|
|
|
|
position_ids = torch.cat([position_ids, new_positions], dim=-1)
|
|
|
|
|
else:
|
|
|
|
|
input_tensor = inputs_embeds
|
|
|
|
|
attention_mask = block_causal_update_causal_mask(
|
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
|
cache_position=cache_position,
|
|
|
|
|
input_tensor=input_tensor,
|
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
|
dtype=self.dtype,
|
|
|
|
|
attn_implementation=self.config.text_config._attn_implementation,
|
|
|
|
|
)
|
|
|
|
|
# Overwritten -- custom `position_ids` and `pixel_values` handling
|
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation(
|
|
|
|
|
input_ids,
|
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
position_ids=position_ids,
|
|
|
|
|
cache_position=cache_position,
|
|
|
|
|
use_cache=use_cache,
|
|
|
|
|
num_logits_to_keep=num_logits_to_keep,
|
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Position_ids in Paligemma are 1-indexed
|
|
|
|
|
if model_inputs.get("position_ids") is not None:
|
|
|
|
|
model_inputs["position_ids"] += 1
|
|
|
|
|
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
|
|
|
|
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
|
|
|
|
|
if cache_position[0] == 0:
|
|
|
|
|
model_inputs["pixel_values"] = pixel_values
|
|
|
|
|
is_training = token_type_ids is not None and labels is not None
|
|
|
|
|
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
|
|
|
|
|
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
|
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
|
|
|
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
|
|
|
|
|
)
|
|
|
|
|
model_inputs["attention_mask"] = causal_mask
|
|
|
|
|
|
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PI0FAST(nn.Module):
|
|
|
|
|
def __init__(self, config: PI0FASTConfig):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.config = config
|
|
|
|
|
|
|
|
|
|
# TODO: move tokenizers in Policy
|
|
|
|
|
fast_tokenizer_path = "physical-intelligence/fast"
|
|
|
|
|
pi0_paligemma_path = "google/paligemma-3b-pt-224"
|
|
|
|
|
self.paligemma_tokenizer = AutoTokenizer.from_pretrained(pi0_paligemma_path)
|
|
|
|
|
self.processor = AutoProcessor.from_pretrained(pi0_paligemma_path)
|
|
|
|
|
self.fast_tokenizer = AutoProcessor.from_pretrained(fast_tokenizer_path, trust_remote_code=True)
|
|
|
|
|
self.fast_skip_tokens = self.config.fast_skip_tokens
|
|
|
|
|
self.max_input_seq_len = self.config.max_input_seq_len
|
|
|
|
|
self.action_horizon = self.config.chunk_size
|
|
|
|
|
self.action_dim = self.config.action_feature.shape[
|
|
|
|
|
0
|
|
|
|
|
] # self.config.max_action_dim # self.config.action_feature.shape[0]
|
|
|
|
|
precision = config.precision
|
|
|
|
|
torch_precision = PRECISION.get(precision, torch.float32)
|
|
|
|
|
self.pad_token_id = (
|
|
|
|
|
self.paligemma_tokenizer.pad_token_id
|
|
|
|
|
if hasattr(self.paligemma_tokenizer, "pad_token_id")
|
|
|
|
|
else self.paligemma_tokenizer.eos_token_id
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
paligemma_config = CONFIG_MAPPING["paligemma"](
|
|
|
|
|
transformers_version="4.48.1",
|
|
|
|
|
_vocab_size=257152,
|
|
|
|
|
bos_token_id=2,
|
|
|
|
|
eos_token_id=1,
|
|
|
|
|
hidden_size=2048,
|
|
|
|
|
image_token_index=257152,
|
|
|
|
|
model_type="paligemma",
|
|
|
|
|
pad_token_id=0,
|
|
|
|
|
projection_dim=2048,
|
|
|
|
|
text_config={
|
|
|
|
|
"hidden_activation": "gelu_pytorch_tanh",
|
|
|
|
|
"hidden_size": 2048,
|
|
|
|
|
"intermediate_size": 16384,
|
|
|
|
|
"model_type": "gemma",
|
|
|
|
|
"num_attention_heads": 8,
|
|
|
|
|
"num_hidden_layers": 18,
|
|
|
|
|
"num_image_tokens": 256,
|
|
|
|
|
"num_key_value_heads": 1,
|
|
|
|
|
"torch_dtype": precision,
|
|
|
|
|
"vocab_size": 257152,
|
|
|
|
|
"_attn_implementation": "eager",
|
|
|
|
|
},
|
|
|
|
|
vision_config={
|
|
|
|
|
"hidden_size": 1152,
|
|
|
|
|
"intermediate_size": 4304,
|
|
|
|
|
"model_type": "siglip_vision_model",
|
|
|
|
|
"num_attention_heads": 16,
|
|
|
|
|
"num_hidden_layers": 27,
|
|
|
|
|
"num_image_tokens": 256,
|
|
|
|
|
"patch_size": 14,
|
|
|
|
|
"projection_dim": 2048,
|
|
|
|
|
"projector_hidden_act": "gelu_pytorch_tanh",
|
|
|
|
|
"torch_dtype": precision,
|
|
|
|
|
"vision_use_head": False,
|
|
|
|
|
},
|
|
|
|
|
)
|
|
|
|
|
self.pi0_paligemma = PaliGemmaForConditionalGeneration(config=paligemma_config)
|
|
|
|
|
|
|
|
|
|
self.pi0_paligemma.prepare_inputs_for_generation = partial(
|
|
|
|
|
prepare_inputs_for_generation, self=self.pi0_paligemma
|
|
|
|
|
)
|
|
|
|
|
# change important stuff in bf16
|
|
|
|
|
params_to_change_dtype = [
|
|
|
|
|
"language_model",
|
|
|
|
|
"vision_tower",
|
|
|
|
|
"multi_modal",
|
|
|
|
|
]
|
|
|
|
|
for name, param in self.pi0_paligemma.named_parameters():
|
|
|
|
|
if any(selector in name for selector in params_to_change_dtype):
|
|
|
|
|
param.data = param.data.to(dtype=torch_precision)
|
|
|
|
|
self.set_requires_grad()
|
|
|
|
|
self.image_keys = self.config.image_features.keys()
|
|
|
|
|
self.ignore_index = self.pi0_paligemma.config.ignore_index
|
|
|
|
|
self.padding_side = self.config.padding_side
|
|
|
|
|
|
|
|
|
|
def set_requires_grad(self):
|
|
|
|
|
if self.config.freeze_vision_encoder:
|
|
|
|
|
self.pi0_paligemma.vision_tower.eval()
|
|
|
|
|
for params in self.pi0_paligemma.vision_tower.parameters():
|
|
|
|
|
params.requires_grad = False
|
|
|
|
|
# To avoid unused params issue with distributed training
|
|
|
|
|
if self.config.freeze_lm_head:
|
|
|
|
|
for name, params in self.pi0_paligemma.named_parameters():
|
|
|
|
|
if "embed_tokens" in name: # lm heads and embedding layer are tied
|
|
|
|
|
params.requires_grad = False
|
|
|
|
|
|
|
|
|
|
def embed_tokens(self, tokens: torch.Tensor):
|
|
|
|
|
return self.pi0_paligemma.language_model.model.embed_tokens(tokens)
|
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self, *args, **kwargs):
|
|
|
|
|
return self.pi0_paligemma.prepare_inputs_for_generation(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
def prepare_images(self, batch):
|
|
|
|
|
"""Preprocess LeRobot batch into Pi0 inputs"""
|
|
|
|
|
images = []
|
|
|
|
|
img_masks = []
|
|
|
|
|
present_img_keys = [key for key in self.image_keys if key in batch]
|
|
|
|
|
if len(present_img_keys) == 0:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Preprocess image features present in the batch
|
|
|
|
|
num_empty_cameras = 0
|
|
|
|
|
for key in self.image_keys:
|
|
|
|
|
if key in present_img_keys:
|
|
|
|
|
img = batch[key]
|
|
|
|
|
|
|
|
|
|
if self.config.resize_imgs_with_padding is not None:
|
|
|
|
|
img = resize_with_pad(
|
|
|
|
|
img,
|
|
|
|
|
*self.config.resize_imgs_with_padding,
|
|
|
|
|
pad_value=0,
|
|
|
|
|
interpolate_like_pi=self.config.interpolate_like_pi,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Normalize from range [0,1] to [-1,1] as expacted by siglip
|
|
|
|
|
img = img * 2.0 - 1.0
|
|
|
|
|
|
|
|
|
|
bsize = img.shape[0]
|
|
|
|
|
device = img.device
|
|
|
|
|
mask = torch.ones(bsize, dtype=torch.bool, device=device)
|
|
|
|
|
else:
|
|
|
|
|
if num_empty_cameras >= self.config.empty_cameras:
|
|
|
|
|
continue
|
|
|
|
|
img = torch.ones_like(img) * -1
|
|
|
|
|
bsize = img.shape[0]
|
|
|
|
|
device = img.device
|
|
|
|
|
mask = torch.ones(bsize, dtype=torch.bool, device=device)
|
|
|
|
|
num_empty_cameras += 1
|
|
|
|
|
|
|
|
|
|
images.append(img)
|
|
|
|
|
img_masks.append(mask)
|
|
|
|
|
return images, img_masks
|
|
|
|
|
|
|
|
|
|
def normalize_actions(self, actions: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
mins = actions.amin(dim=(1, 2), keepdim=True) # [0]
|
|
|
|
|
maxs = actions.amax(dim=(1, 2), keepdim=True) # [0]
|
|
|
|
|
return 2 * (actions - mins) / (maxs - mins + 1e-8) - 1
|
|
|
|
|
|
|
|
|
|
def _act_tokens_to_paligemma_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
out = self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens - tokens
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def fast_tokenizer_wrapper(self, actions_norm):
|
|
|
|
|
"""
|
|
|
|
|
A wrapper for self.fast_tokenizer that ensures batch processing,
|
|
|
|
|
conversion to PyTorch tensors, and returns a dictionary without padding.
|
|
|
|
|
"""
|
|
|
|
|
batch_tokens = self.fast_tokenizer(actions_norm)
|
|
|
|
|
fast_out = self.processor.tokenizer.pad({"input_ids": batch_tokens}, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
return fast_out
|
|
|
|
|
|
|
|
|
|
def create_token_type_ids(self, padded_mask: torch.Tensor, prefix_len: int) -> torch.Tensor:
|
|
|
|
|
token_type_ids = torch.zeros_like(padded_mask, dtype=torch.bool)
|
|
|
|
|
# Compute cumulative sum mask
|
|
|
|
|
cumsum_mask = (padded_mask != 0).cumsum(dim=1)
|
|
|
|
|
# Suffix block (everything after prefix_len)
|
|
|
|
|
suffix_mask = cumsum_mask > prefix_len
|
|
|
|
|
token_type_ids = suffix_mask
|
|
|
|
|
return token_type_ids
|
|
|
|
|
|
|
|
|
|
def create_input_tokens(self, state, lang_text, actions=None):
|
|
|
|
|
bsize = state.shape[0]
|
|
|
|
|
device = state.device
|
|
|
|
|
bins = torch.linspace(-1, 1, 256 + 1, device=device)[:-1]
|
|
|
|
|
discretized = torch.bucketize(state, bins) - 1
|
|
|
|
|
discretized = discretized[:, :32]
|
|
|
|
|
|
|
|
|
|
prefix_texts = []
|
|
|
|
|
state_text = []
|
|
|
|
|
for txt, disc in zip(lang_text, discretized, strict=False):
|
|
|
|
|
cleaned = txt.lower().strip().replace("_", " ")
|
|
|
|
|
state_str = " ".join(str(val.item()) for val in disc)
|
|
|
|
|
prefix_texts.append(f"Task: {cleaned}, State: {state_str};\n")
|
|
|
|
|
state_text.append(f"State: {state_str};\n")
|
|
|
|
|
|
|
|
|
|
prefix_out = self.paligemma_tokenizer(
|
|
|
|
|
prefix_texts, add_special_tokens=True, return_tensors="pt", padding="longest", truncation=False
|
|
|
|
|
)
|
|
|
|
|
prefix_ids = prefix_out["input_ids"].to(device)
|
|
|
|
|
prefix_mask = prefix_out["attention_mask"].to(device)
|
|
|
|
|
prefix_lens = prefix_mask.sum(dim=1)[:, None].cpu()
|
|
|
|
|
|
|
|
|
|
if actions is not None:
|
|
|
|
|
actions_norm = self.normalize_actions(actions)
|
|
|
|
|
actions_pad = F.pad(
|
|
|
|
|
actions_norm, (0, max(0, self.config.max_action_dim - actions_norm.shape[2])), value=0
|
|
|
|
|
)[:, :, : self.config.max_action_dim]
|
|
|
|
|
fast_out = self.fast_tokenizer_wrapper(
|
|
|
|
|
actions_pad.cpu(),
|
|
|
|
|
)
|
|
|
|
|
act_ids = fast_out["input_ids"]
|
|
|
|
|
act_mask = fast_out["attention_mask"].to(device)
|
|
|
|
|
|
|
|
|
|
act_ids = self._act_tokens_to_paligemma_tokens(act_ids).to(device)
|
|
|
|
|
# Replace action with 0 to pad tokens
|
|
|
|
|
act_ids = torch.where(
|
|
|
|
|
act_ids == self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens,
|
|
|
|
|
self.pad_token_id,
|
|
|
|
|
act_ids,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
eos_token = torch.tensor(
|
|
|
|
|
[self.paligemma_tokenizer.eos_token_id], dtype=torch.long, device=device
|
|
|
|
|
).expand(bsize, -1)
|
|
|
|
|
eos_mask = torch.tensor([1], dtype=torch.long, device=device).expand(bsize, -1)
|
|
|
|
|
bos = self.paligemma_tokenizer("Action: ", add_special_tokens=False, return_tensors="pt")
|
|
|
|
|
bos_token = bos["input_ids"].expand(act_ids.shape[0], -1).to(device)
|
|
|
|
|
bos_mask = bos["attention_mask"].expand(act_ids.shape[0], -1).to(device)
|
|
|
|
|
act_ids = torch.cat([bos_token, act_ids, eos_token], dim=1)
|
|
|
|
|
act_mask = torch.cat([bos_mask, act_mask, eos_mask], dim=1)
|
|
|
|
|
act_mask = act_mask.to(device)
|
|
|
|
|
else:
|
|
|
|
|
act_ids = torch.empty(bsize, self.pad_token_id, dtype=torch.long, device=device)
|
|
|
|
|
act_mask = torch.empty(bsize, 0, dtype=torch.long, device=device)
|
|
|
|
|
final_ids = torch.cat([prefix_ids, act_ids], dim=1)
|
|
|
|
|
|
|
|
|
|
final_mask = torch.cat([prefix_mask, act_mask], dim=1)
|
|
|
|
|
batch_inputs = {"input_ids": final_ids.tolist(), "attention_mask": final_mask.tolist()}
|
|
|
|
|
|
|
|
|
|
# Use tokenizer pad function
|
|
|
|
|
padded_output = self.paligemma_tokenizer.pad(
|
|
|
|
|
batch_inputs, padding="longest", max_length=180, return_tensors="pt"
|
|
|
|
|
)
|
|
|
|
|
padded_mask = padded_output["attention_mask"]
|
|
|
|
|
|
|
|
|
|
# define tensor of padding lengths
|
|
|
|
|
att_mask = (padded_mask != 0).cumsum(dim=1) > prefix_lens
|
|
|
|
|
|
|
|
|
|
token_type_ids = self.create_token_type_ids(padded_mask=padded_mask, prefix_len=prefix_lens)
|
|
|
|
|
|
|
|
|
|
padded_output["padded_mask"] = padded_output.pop("attention_mask")
|
|
|
|
|
padded_output["attention_mask"] = att_mask
|
|
|
|
|
# loss is computed not on prefix, and not on padding
|
|
|
|
|
padded_output["loss_mask"] = att_mask & padded_output["padded_mask"]
|
|
|
|
|
padded_output["token_type_ids"] = token_type_ids
|
|
|
|
|
return padded_output
|
|
|
|
|
|
|
|
|
|
def shift_padding_side(
|
|
|
|
|
self,
|
|
|
|
|
tokens: torch.Tensor,
|
|
|
|
|
ar_mask: torch.Tensor,
|
|
|
|
|
padding_mask: torch.Tensor,
|
|
|
|
|
loss_mask: torch.Tensor,
|
|
|
|
|
targets: torch.Tensor,
|
|
|
|
|
token_type_ids: torch.Tensor,
|
|
|
|
|
padding_side: str = "right",
|
|
|
|
|
) -> tuple[torch.Tensor]:
|
|
|
|
|
if padding_side not in ["right", "left"]:
|
|
|
|
|
return tokens, ar_mask, padding_mask, loss_mask, targets, token_type_ids
|
|
|
|
|
|
|
|
|
|
new_tokens = torch.empty_like(tokens)
|
|
|
|
|
new_ar_masks = torch.empty_like(ar_mask)
|
|
|
|
|
new_padding_mask = torch.empty_like(padding_mask)
|
|
|
|
|
new_loss_mask = torch.empty_like(loss_mask)
|
|
|
|
|
new_targets = torch.empty_like(targets)
|
|
|
|
|
new_token_type_ids = torch.empty_like(token_type_ids)
|
|
|
|
|
batch_size = tokens.shape[0]
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
padding_indices = torch.where(padding_mask[i] == 0)[0]
|
|
|
|
|
non_padding_indices = torch.where(padding_mask[i] == 1)[0]
|
|
|
|
|
if padding_side == "left":
|
|
|
|
|
new_indices = torch.cat((padding_indices, non_padding_indices), dim=0)
|
|
|
|
|
else:
|
|
|
|
|
new_indices = torch.cat((non_padding_indices, padding_indices), dim=0)
|
|
|
|
|
new_tokens[i] = tokens[i].index_select(0, new_indices)
|
|
|
|
|
new_ar_masks[i] = ar_mask[i].index_select(0, new_indices)
|
|
|
|
|
new_padding_mask[i] = padding_mask[i].index_select(0, new_indices)
|
|
|
|
|
new_loss_mask[i] = loss_mask[i].index_select(0, new_indices)
|
|
|
|
|
new_targets[i] = targets[i].index_select(0, new_indices)
|
|
|
|
|
new_token_type_ids[i] = token_type_ids[i].index_select(0, new_indices)
|
|
|
|
|
|
|
|
|
|
return new_tokens, new_ar_masks, new_padding_mask, new_loss_mask, new_targets, new_token_type_ids
|
|
|
|
|
|
|
|
|
|
def forward(self, batch: dict[str, Tensor]):
|
|
|
|
|
device = batch[OBS_ROBOT].device
|
|
|
|
|
# TODO: keep like this or move to the policy .forward
|
|
|
|
|
images, img_masks = self.prepare_images(batch)
|
|
|
|
|
|
|
|
|
|
padded_outs = self.create_input_tokens(
|
|
|
|
|
state=batch[OBS_ROBOT],
|
|
|
|
|
lang_text=batch["task"],
|
|
|
|
|
actions=batch[ACTION],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
embs, pad_masks, _, targets, loss_mask, token_type_ids = self.embed_inputs(
|
|
|
|
|
images,
|
|
|
|
|
img_masks,
|
|
|
|
|
padded_outs["input_ids"],
|
|
|
|
|
padded_outs["padded_mask"],
|
|
|
|
|
padded_outs["attention_mask"],
|
|
|
|
|
padded_outs["loss_mask"],
|
|
|
|
|
padded_outs["token_type_ids"],
|
|
|
|
|
padding_side=self.padding_side,
|
|
|
|
|
)
|
|
|
|
|
position_ids = torch.cumsum(pad_masks, dim=1) - 1
|
|
|
|
|
token_type_ids = token_type_ids.to(dtype=torch.int64)
|
|
|
|
|
past_seen_tokens = 0
|
|
|
|
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + embs.shape[1], device=embs.device)
|
|
|
|
|
pad_masks = block_causal_update_causal_mask(
|
|
|
|
|
attention_mask=pad_masks,
|
|
|
|
|
past_key_values=None,
|
|
|
|
|
cache_position=cache_position,
|
|
|
|
|
input_tensor=embs,
|
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
|
dtype=self.pi0_paligemma.dtype,
|
|
|
|
|
attn_implementation=self.pi0_paligemma.config.text_config._attn_implementation,
|
|
|
|
|
)
|
|
|
|
|
outputs = self.pi0_paligemma.forward(
|
|
|
|
|
input_ids=None,
|
|
|
|
|
token_type_ids=None,
|
|
|
|
|
attention_mask=pad_masks,
|
|
|
|
|
position_ids=position_ids,
|
|
|
|
|
past_key_values=None,
|
|
|
|
|
inputs_embeds=embs,
|
|
|
|
|
use_cache=False,
|
|
|
|
|
labels=None,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logits = outputs.logits
|
|
|
|
|
|
|
|
|
|
loss_fct = nn.CrossEntropyLoss(reduction="none")
|
|
|
|
|
|
|
|
|
|
# Shift left for next-step prediction
|
|
|
|
|
logits = logits[:, :-1, :]
|
|
|
|
|
targets = targets[:, 1:].to(device) # Shift targets
|
|
|
|
|
loss_mask = loss_mask[:, 1:].to(device) # Ensure correct shape
|
|
|
|
|
|
|
|
|
|
# Compute per-token loss
|
|
|
|
|
token_loss = loss_fct(logits.reshape(-1, logits.shape[-1]), targets.reshape(-1))
|
|
|
|
|
|
|
|
|
|
# Apply loss mask
|
|
|
|
|
token_loss = token_loss * loss_mask.reshape(-1)
|
|
|
|
|
|
|
|
|
|
# Compute final loss
|
|
|
|
|
loss = token_loss.sum() / torch.clamp(loss_mask.sum(), min=1)
|
|
|
|
|
|
|
|
|
|
# Return loss dictionary
|
|
|
|
|
loss_dict = {"ce_loss": loss.item(), "loss": loss}
|
|
|
|
|
return loss_dict
|
|
|
|
|
|
|
|
|
|
def decode_actions_with_fast(
|
|
|
|
|
self,
|
|
|
|
|
tokens: list[list[int]],
|
|
|
|
|
*,
|
|
|
|
|
time_horizon: int | None = None,
|
|
|
|
|
action_dim: int | None = None,
|
|
|
|
|
relaxed_decoding: bool = True,
|
|
|
|
|
) -> np.array:
|
|
|
|
|
"""
|
|
|
|
|
Adapt original decoding in FAST to always return actions instead of zeros.
|
|
|
|
|
"""
|
|
|
|
|
self.time_horizon = (
|
|
|
|
|
time_horizon or self.fast_tokenizer.time_horizon or self.fast_tokenizer.called_time_horizon
|
|
|
|
|
)
|
|
|
|
|
self.action_dim = (
|
|
|
|
|
action_dim or self.fast_tokenizer.action_dim or self.fast_tokenizer.called_action_dim
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Cache the time horizon and action dimension for the next call
|
|
|
|
|
self.called_time_horizon = self.time_horizon
|
|
|
|
|
self.called_action_dim = self.action_dim
|
|
|
|
|
|
|
|
|
|
assert self.time_horizon is not None and self.action_dim is not None, (
|
|
|
|
|
"Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
decoded_actions = []
|
|
|
|
|
for token in tokens:
|
|
|
|
|
try:
|
|
|
|
|
decoded_tokens = self.fast_tokenizer.bpe_tokenizer.decode(token)
|
|
|
|
|
decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.fast_tokenizer.min_token
|
|
|
|
|
if relaxed_decoding:
|
|
|
|
|
# Expected sequence length
|
|
|
|
|
expected_seq_len = self.time_horizon * self.action_dim
|
|
|
|
|
diff = expected_seq_len - decoded_dct_coeff.shape[0]
|
|
|
|
|
# Apply truncation if too long
|
|
|
|
|
if diff < 0:
|
|
|
|
|
decoded_dct_coeff = decoded_dct_coeff[:expected_seq_len] # Truncate on the right
|
|
|
|
|
# Apply padding if too short
|
|
|
|
|
elif diff > 0:
|
|
|
|
|
decoded_dct_coeff = np.pad(
|
|
|
|
|
decoded_dct_coeff, (0, diff), mode="constant", constant_values=0
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
|
|
|
|
|
assert decoded_dct_coeff.shape == (
|
|
|
|
|
self.time_horizon,
|
|
|
|
|
self.action_dim,
|
|
|
|
|
), (
|
|
|
|
|
f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
|
|
|
|
|
)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error decoding tokens: {e}")
|
|
|
|
|
print(f"Tokens: {token}")
|
|
|
|
|
decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
|
|
|
|
|
decoded_actions.append(idct(decoded_dct_coeff / self.fast_tokenizer.scale, axis=0, norm="ortho"))
|
|
|
|
|
return np.stack(decoded_actions)
|
|
|
|
|
|
|
|
|
|
def extract_actions(self, tokens: torch.Tensor, action_horizon: int, action_dim: int) -> torch.Tensor:
|
|
|
|
|
"""
|
|
|
|
|
Extracts actions from predicted output tokens using the FAST model.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tokens (torch.Tensor): The input tensor of tokenized outputs.
|
|
|
|
|
action_horizon (int): The number of timesteps for actions.
|
|
|
|
|
action_dim (int): The dimensionality of each action.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
torch.Tensor: The extracted actions as a tensor of shape (action_horizon, action_dim).
|
|
|
|
|
"""
|
|
|
|
|
# Decode predicted output tokens
|
|
|
|
|
decoded_tokens = self.paligemma_tokenizer.batch_decode(tokens, skip_special_tokens=True)
|
|
|
|
|
cleaned_tokens = [
|
|
|
|
|
tokens_sequence.replace("Action:", "").replace(":", "").strip().split("|")[0].strip()
|
|
|
|
|
for tokens_sequence in decoded_tokens
|
|
|
|
|
]
|
|
|
|
|
raw_action_tokens = [
|
|
|
|
|
self.processor.tokenizer.encode(sample_tokens, return_tensors="pt", padding=False)
|
|
|
|
|
for sample_tokens in cleaned_tokens
|
|
|
|
|
] # something like this should be robust #looks good
|
|
|
|
|
action_tokens = [
|
|
|
|
|
self._act_tokens_to_paligemma_tokens(raw_action_token) for raw_action_token in raw_action_tokens
|
|
|
|
|
]
|
|
|
|
|
# returns the tensor of decoded actions per sample in a list
|
|
|
|
|
decoded_actions = [
|
|
|
|
|
torch.tensor(
|
|
|
|
|
self.decode_actions_with_fast(
|
|
|
|
|
tok.tolist(),
|
|
|
|
|
time_horizon=action_horizon,
|
|
|
|
|
action_dim=action_dim,
|
|
|
|
|
relaxed_decoding=self.config.relaxed_action_decoding,
|
|
|
|
|
),
|
|
|
|
|
device=tokens.device,
|
|
|
|
|
).squeeze(0)
|
|
|
|
|
for tok in action_tokens
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
return torch.stack(
|
|
|
|
|
decoded_actions,
|
|
|
|
|
dim=0,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def generate_actions(self, batch: dict[str, Tensor]):
|
|
|
|
|
# TODO: keep like this or move to the policy .forward
|
|
|
|
|
images, img_masks = self.prepare_images(batch)
|
|
|
|
|
|
|
|
|
|
padded_outs = self.create_input_tokens(state=batch[OBS_ROBOT], lang_text=batch["task"], actions=None)
|
|
|
|
|
embs, pad_masks, att_masks2, targets, loss_mask, token_type_ids = self.embed_inputs(
|
|
|
|
|
images,
|
|
|
|
|
img_masks,
|
|
|
|
|
padded_outs["input_ids"],
|
|
|
|
|
padded_outs["padded_mask"],
|
|
|
|
|
padded_outs["attention_mask"],
|
|
|
|
|
padded_outs["loss_mask"],
|
|
|
|
|
padded_outs["token_type_ids"],
|
|
|
|
|
padding_side="left",
|
|
|
|
|
)
|
|
|
|
|
token_type_ids = token_type_ids.to(dtype=torch.int64)
|
|
|
|
|
prefix_position_ids = torch.cumsum(pad_masks, dim=1) - 1
|
|
|
|
|
output_tokens = self.pi0_paligemma.generate(
|
|
|
|
|
input_ids=None,
|
|
|
|
|
attention_mask=pad_masks,
|
|
|
|
|
position_ids=prefix_position_ids,
|
|
|
|
|
past_key_values=None,
|
|
|
|
|
inputs_embeds=embs,
|
|
|
|
|
use_cache=self.config.use_cache,
|
|
|
|
|
max_new_tokens=self.config.max_decoding_steps,
|
|
|
|
|
do_sample=False,
|
|
|
|
|
num_beams=1,
|
|
|
|
|
token_type_ids=token_type_ids,
|
|
|
|
|
)
|
|
|
|
|
actions = self.extract_actions(output_tokens, self.action_horizon, self.action_dim)
|
|
|
|
|
return actions
|
|
|
|
|
|
|
|
|
|
def embed_image(self, image: torch.Tensor):
|
|
|
|
|
return self.pi0_paligemma.get_image_features(image)
|
|
|
|
|
|
|
|
|
|
def embed_inputs(
|
|
|
|
|
self,
|
|
|
|
|
images,
|
|
|
|
|
img_masks,
|
|
|
|
|
tokens,
|
|
|
|
|
pad_mask,
|
|
|
|
|
ar_mask,
|
|
|
|
|
loss_mask,
|
|
|
|
|
token_type_ids,
|
|
|
|
|
padding_side: str = "right",
|
|
|
|
|
):
|
|
|
|
|
# TODO: avoid list in python and torch.cat ; prefer pre-allocation with torch.empty
|
|
|
|
|
# images are a list of same size
|
|
|
|
|
# vectorizing everything!
|
|
|
|
|
device = images[0].device
|
|
|
|
|
image_embedding_dim = images[0].shape[-1] # TODO should be from self.config
|
|
|
|
|
all_images = torch.stack(images, dim=1).to(device)
|
|
|
|
|
b, n, c, h, w = all_images.shape
|
|
|
|
|
all_images = all_images.view(b * n, c, h, w)
|
|
|
|
|
embedded = self.embed_image(all_images).to(device)
|
|
|
|
|
b_n, p, image_embedding_dim = embedded.shape # Extract current dimensions
|
|
|
|
|
m = b_n // b # Compute the number of images per sample dynamically
|
|
|
|
|
|
|
|
|
|
# Reshape dynamically
|
|
|
|
|
embedded = embedded.view(b, m, p, image_embedding_dim)
|
|
|
|
|
tokens_embs = self.embed_tokens(tokens.to(device))
|
|
|
|
|
|
|
|
|
|
img_masks = torch.stack(img_masks, dim=1).unsqueeze(-1).to(device)
|
|
|
|
|
num_img_emb = embedded.shape[2]
|
|
|
|
|
img_pad_masks = img_masks.repeat(1, 1, num_img_emb).view(b, -1)
|
|
|
|
|
img_att_masks = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
|
|
|
|
|
|
|
|
|
|
image_target_tokens = (
|
|
|
|
|
torch.ones((b, n, num_img_emb), dtype=torch.long, device=device) * self.pad_token_id
|
|
|
|
|
).reshape(b, -1)
|
|
|
|
|
image_loss_mask = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
|
|
|
|
|
|
|
|
|
|
embedded = embedded.reshape(b, n * num_img_emb, image_embedding_dim) # Shape: (B, N*P, D)
|
|
|
|
|
|
|
|
|
|
embs = torch.cat([embedded, tokens_embs], dim=1).to(device)
|
|
|
|
|
pad_masks = torch.cat([img_pad_masks, pad_mask.to(device)], dim=1)
|
|
|
|
|
att_masks = torch.cat([img_att_masks, ar_mask.to(device)], dim=1)
|
|
|
|
|
loss_masks = torch.cat([image_loss_mask, loss_mask.to(device)], dim=1)
|
|
|
|
|
targets = torch.cat([image_target_tokens, tokens.to(device)], dim=1)
|
|
|
|
|
token_type_ids = torch.cat([img_att_masks, token_type_ids.to(device)], dim=1)
|
|
|
|
|
|
|
|
|
|
# Shift pad tokens to the left (.generate()) or right (.train())
|
|
|
|
|
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids = self.shift_padding_side(
|
|
|
|
|
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids, padding_side=padding_side
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
targets = torch.where(targets == self.pad_token_id, self.ignore_index, targets)
|
|
|
|
|
return embs, pad_masks, att_masks, targets, loss_masks, token_type_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resize_with_pad(img, width, height, pad_value=0, interpolate_like_pi=True):
|
|
|
|
|
# assume no-op when width height fits already
|
|
|
|
|
if img.ndim != 4:
|
|
|
|
|
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
|
|
|
|
|
|
|
|
|
|
cur_height, cur_width = img.shape[2:]
|
|
|
|
|
|
|
|
|
|
ratio = max(cur_width / width, cur_height / height)
|
|
|
|
|
resized_height = int(cur_height / ratio)
|
|
|
|
|
resized_width = int(cur_width / ratio)
|
|
|
|
|
|
|
|
|
|
if interpolate_like_pi:
|
|
|
|
|
img = (img * 255.0).to(dtype=torch.uint8)
|
|
|
|
|
img = img.permute(0, 2, 3, 1)
|
|
|
|
|
original_device = img.device
|
|
|
|
|
img = img.to(device="cpu").numpy()
|
|
|
|
|
imgs = []
|
|
|
|
|
for sub_img in img:
|
|
|
|
|
sub_img = Image.fromarray(sub_img)
|
|
|
|
|
resized_img = sub_img.resize((resized_width, resized_height), resample=2)
|
|
|
|
|
resized_img = torch.from_numpy(np.array(resized_img))
|
|
|
|
|
imgs.append(resized_img)
|
|
|
|
|
img = torch.stack(imgs, dim=0)
|
|
|
|
|
img = img.permute(0, 3, 1, 2)
|
|
|
|
|
resized_img = img.to(device=original_device, dtype=torch.float32) / 255.0
|
|
|
|
|
else:
|
|
|
|
|
resized_img = F.interpolate(
|
|
|
|
|
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
pad_height = max(0, int(height - resized_height))
|
|
|
|
|
pad_width = max(0, int(width - resized_width))
|
|
|
|
|
|
|
|
|
|
# pad on left and top of image
|
|
|
|
|
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
|
|
|
|
|
return padded_img
|