eval.mp4 works!

This commit is contained in:
Cadene 2024-01-30 23:30:14 +00:00
parent 1144819c29
commit 1e52499490
4 changed files with 127 additions and 15 deletions

View File

@ -9,3 +9,17 @@ conda env create -f environment.yaml
conda activate lerobot
```
**dev**
```
python setup.py develop
```
## Contribute
**style**
```
isort .
black .
pylint lerobot
```

View File

@ -1,2 +1,71 @@
seed: 1337
log_dir: logs/2024_01_26_train
# env
env: simxarm
task: lift
from_pixels: True
pixels_only: False
image_size: 84
# pixels
frame_stack: 1
num_channels: 32
img_size: 84
# TDMPC
# planning
mpc: true
iterations: 6
num_samples: 512
num_elites: 50
mixture_coef: 0.1
min_std: 0.05
max_std: 2.0
temperature: 0.5
momentum: 0.1
uncertainty_cost: 1
# actor
log_std_min: -10
log_std_max: 2
# learning
batch_size: 256
max_buffer_size: 10000
horizon: 5
reward_coef: 0.5
value_coef: 0.1
consistency_coef: 20
rho: 0.5
kappa: 0.1
lr: 3e-4
std_schedule: ${min_std}
horizon_schedule: ${horizon}
per: true
per_alpha: 0.6
per_beta: 0.4
grad_clip_norm: 10
seed_steps: 0
update_freq: 2
tau: 0.01
utd: 1
# architecture
enc_dim: 256
num_q: 5
mlp_dim: 512
latent_dim: 50
# xarm_lift
A_scaling: 3.0
expectile: 0.9
episode_length: 25
modality: 'all'
action_repeat: 2
discount: 0.9

View File

@ -4,10 +4,12 @@ import hydra
import imageio
import numpy as np
import torch
from tensordict import TensorDict
from termcolor import colored
from ..lib.envs import make_env
from ..lib.utils import set_seed
from lerobot.lib.envs.factory import make_env
from lerobot.lib.tdmpc import TDMPC
from lerobot.lib.utils import set_seed
def eval_agent(
@ -21,32 +23,45 @@ def eval_agent(
episode_successes = []
episode_lengths = []
for i in range(num_episodes):
obs, done, ep_reward, t = env.reset(), False, 0, 0
td = env.reset()
obs = {}
obs["rgb"] = td["observation"]["camera"]
obs["state"] = td["observation"]["robot_state"]
done = False
ep_reward = 0
t = 0
ep_success = False
if save_video:
frames = []
while not done:
action = agent.act(obs, t0=t == 0, eval_mode=True, step=step)
obs, reward, done, info = env.step(action.cpu().numpy())
action = agent.act(obs, t0=t == 0, eval_mode=True, step=100000)
td = TensorDict({"action": action}, batch_size=[])
td = env.step(td)
reward = td["next", "reward"].item()
success = td["next", "success"].item()
done = td["next", "done"].item()
obs = {}
obs["rgb"] = td["next", "observation"]["camera"]
obs["state"] = td["next", "observation"]["robot_state"]
ep_reward += reward
if "success" in info and info["success"]:
if success:
ep_success = True
if save_video:
frame = env.render(
mode="rgb_array",
# TODO(rcadene): make height, width, camera_id configurable
height=384,
width=384,
camera_id=0,
)
frame = env.render()
frames.append(frame)
t += 1
episode_rewards.append(float(ep_reward))
episode_successes.append(float(ep_success))
episode_lengths.append(t)
if save_video:
frames = np.stack(frames).transpose(0, 3, 1, 2)
video_path.parent.mkdir(parents=True, exist_ok=True)
frames = np.stack(frames) # .transpose(0, 3, 1, 2)
# TODO(rcadene): make fps configurable
imageio.mimsave(video_path, frames, fps=15)
return {
@ -63,8 +78,20 @@ def eval(cfg: dict):
print(colored("Log dir:", "yellow", attrs=["bold"]), cfg.log_dir)
env = make_env(cfg)
agent = TDMPC(cfg)
# ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt"
agent.load(ckpt_path)
eval_metrics = eval_agent(env, agent, num_episodes=10, save_video=True)
eval_metrics = eval_agent(
env,
agent,
num_episodes=10,
save_video=True,
video_path=Path("tmp/2023_01_29_xarm_lift_final/eval.mp4"),
)
print(eval_metrics)
if __name__ == "__main__":

View File

@ -31,6 +31,8 @@ def test_simxarm(task, from_pixels, pixels_only):
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
print("done_spec:", env.done_spec)
print("success_spec:", env.success_spec)
td = env.reset()
print("reset tensordict", td)