- Added base gym env class for the real robot environment.
- Added several wrappers around the base gym env robot class. - Including: time limit, reward classifier, crop images, preprocess observations. - Added an interactive script crop_roi.py where the user can interactively select the roi in the observation images and return the correct crop values that will improve the policy and reward classifier performance. Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
parent
506821c7df
commit
2211209be5
|
@ -0,0 +1,148 @@
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||||
|
|
||||||
|
|
||||||
|
def select_square_roi(img):
|
||||||
|
"""
|
||||||
|
Allows the user to draw a square ROI on the image.
|
||||||
|
|
||||||
|
The user must click and drag to draw the square.
|
||||||
|
- While dragging, the square is dynamically drawn.
|
||||||
|
- On mouse button release, the square is fixed.
|
||||||
|
- Press 'c' to confirm the selection.
|
||||||
|
- Press 'r' to reset the selection.
|
||||||
|
- Press ESC to cancel.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (top, left, height, width) representing the square ROI,
|
||||||
|
or None if no valid ROI is selected.
|
||||||
|
"""
|
||||||
|
# Create a working copy of the image
|
||||||
|
clone = img.copy()
|
||||||
|
working_img = clone.copy()
|
||||||
|
|
||||||
|
roi = None # Will store the final ROI as (top, left, side, side)
|
||||||
|
drawing = False
|
||||||
|
ix, iy = -1, -1 # Initial click coordinates
|
||||||
|
|
||||||
|
def mouse_callback(event, x, y, flags, param):
|
||||||
|
nonlocal ix, iy, drawing, roi, working_img
|
||||||
|
|
||||||
|
if event == cv2.EVENT_LBUTTONDOWN:
|
||||||
|
# Start drawing: record starting coordinates
|
||||||
|
drawing = True
|
||||||
|
ix, iy = x, y
|
||||||
|
|
||||||
|
elif event == cv2.EVENT_MOUSEMOVE:
|
||||||
|
if drawing:
|
||||||
|
# Compute side length as the minimum of horizontal/vertical drags
|
||||||
|
side = min(abs(x - ix), abs(y - iy))
|
||||||
|
# Determine the direction to draw (in case of dragging to top/left)
|
||||||
|
dx = side if x >= ix else -side
|
||||||
|
dy = side if y >= iy else -side
|
||||||
|
# Show a temporary image with the current square drawn
|
||||||
|
temp = working_img.copy()
|
||||||
|
cv2.rectangle(temp, (ix, iy), (ix + dx, iy + dy), (0, 255, 0), 2)
|
||||||
|
cv2.imshow("Select ROI", temp)
|
||||||
|
|
||||||
|
elif event == cv2.EVENT_LBUTTONUP:
|
||||||
|
# Finish drawing
|
||||||
|
drawing = False
|
||||||
|
side = min(abs(x - ix), abs(y - iy))
|
||||||
|
dx = side if x >= ix else -side
|
||||||
|
dy = side if y >= iy else -side
|
||||||
|
# Normalize coordinates: (top, left) is the minimum of the two points
|
||||||
|
x1 = min(ix, ix + dx)
|
||||||
|
y1 = min(iy, iy + dy)
|
||||||
|
roi = (y1, x1, side, side) # (top, left, height, width)
|
||||||
|
# Draw the final square on the working image and display it
|
||||||
|
working_img = clone.copy()
|
||||||
|
cv2.rectangle(working_img, (ix, iy), (ix + dx, iy + dy), (0, 255, 0), 2)
|
||||||
|
cv2.imshow("Select ROI", working_img)
|
||||||
|
|
||||||
|
# Create the window and set the callback
|
||||||
|
cv2.namedWindow("Select ROI")
|
||||||
|
cv2.setMouseCallback("Select ROI", mouse_callback)
|
||||||
|
cv2.imshow("Select ROI", working_img)
|
||||||
|
|
||||||
|
print("Instructions for ROI selection:")
|
||||||
|
print(" - Click and drag to draw a square ROI.")
|
||||||
|
print(" - Press 'c' to confirm the selection.")
|
||||||
|
print(" - Press 'r' to reset and draw again.")
|
||||||
|
print(" - Press ESC to cancel the selection.")
|
||||||
|
|
||||||
|
# Wait until the user confirms with 'c', resets with 'r', or cancels with ESC
|
||||||
|
while True:
|
||||||
|
key = cv2.waitKey(1) & 0xFF
|
||||||
|
# Confirm ROI if one has been drawn
|
||||||
|
if key == ord("c") and roi is not None:
|
||||||
|
break
|
||||||
|
# Reset: clear the ROI and restore the original image
|
||||||
|
elif key == ord("r"):
|
||||||
|
working_img = clone.copy()
|
||||||
|
roi = None
|
||||||
|
cv2.imshow("Select ROI", working_img)
|
||||||
|
# Cancel selection for this image
|
||||||
|
elif key == 27: # ESC key
|
||||||
|
roi = None
|
||||||
|
break
|
||||||
|
|
||||||
|
cv2.destroyWindow("Select ROI")
|
||||||
|
return roi
|
||||||
|
|
||||||
|
|
||||||
|
def select_square_roi_for_images(images: dict) -> dict:
|
||||||
|
"""
|
||||||
|
For each image in the provided dictionary, open a window to allow the user
|
||||||
|
to select a square ROI. Returns a dictionary mapping each key to a tuple
|
||||||
|
(top, left, height, width) representing the ROI.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
images (dict): Dictionary where keys are identifiers and values are OpenCV images.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: Mapping of image keys to the selected square ROI.
|
||||||
|
"""
|
||||||
|
selected_rois = {}
|
||||||
|
|
||||||
|
for key, img in images.items():
|
||||||
|
if img is None:
|
||||||
|
print(f"Image for key '{key}' is None, skipping.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"\nSelect square ROI for image with key: '{key}'")
|
||||||
|
roi = select_square_roi(img)
|
||||||
|
|
||||||
|
if roi is None:
|
||||||
|
print(f"No valid ROI selected for '{key}'.")
|
||||||
|
else:
|
||||||
|
selected_rois[key] = roi
|
||||||
|
print(f"ROI for '{key}': {roi}")
|
||||||
|
|
||||||
|
return selected_rois
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Example usage:
|
||||||
|
# Replace 'image1.jpg' and 'image2.jpg' with valid paths to your image files.
|
||||||
|
fps = [5, 30]
|
||||||
|
cameras = [OpenCVCamera(i, fps=fps[i], width=640, height=480, mock=False) for i in range(2)]
|
||||||
|
[camera.connect() for camera in cameras]
|
||||||
|
|
||||||
|
image_keys = ["image_" + str(i) for i in range(len(cameras))]
|
||||||
|
|
||||||
|
images = {image_keys[i]: cameras[i].read() for i in range(len(cameras))}
|
||||||
|
|
||||||
|
# Verify images loaded correctly
|
||||||
|
for key, img in images.items():
|
||||||
|
if img is None:
|
||||||
|
raise ValueError(f"Failed to load image for key '{key}'. Check the file path.")
|
||||||
|
|
||||||
|
# Let the user select a square ROI for each image
|
||||||
|
rois = select_square_roi_for_images(images)
|
||||||
|
|
||||||
|
# Print the selected square ROIs
|
||||||
|
print("\nSelected Square Regions of Interest (top, left, height, width):")
|
||||||
|
for key, roi in rois.items():
|
||||||
|
print(f"{key}: {roi}")
|
|
@ -0,0 +1,380 @@
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
from typing import Annotated, Any, Dict, Optional, Tuple
|
||||||
|
|
||||||
|
import gymnasium as gym
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchvision.transforms.functional as F # noqa: N812
|
||||||
|
|
||||||
|
from lerobot.common.envs.utils import preprocess_observation
|
||||||
|
from lerobot.common.robot_devices.control_utils import reset_follower_position
|
||||||
|
from lerobot.common.robot_devices.robots.factory import make_robot
|
||||||
|
from lerobot.common.utils.utils import init_hydra_config
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
|
class HILSerlRobotEnv(gym.Env):
|
||||||
|
"""
|
||||||
|
Gym-like environment wrapper for robot policy evaluation.
|
||||||
|
|
||||||
|
This wrapper provides a consistent interface for interacting with the robot,
|
||||||
|
following the OpenAI Gym environment conventions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
robot,
|
||||||
|
reset_follower_position=True,
|
||||||
|
display_cameras=False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initialize the robot environment.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
robot: The robot interface object
|
||||||
|
reward_classifier: Optional reward classifier
|
||||||
|
fps: Frames per second for control
|
||||||
|
control_time_s: Total control time for each episode
|
||||||
|
display_cameras: Whether to display camera feeds
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.robot = robot
|
||||||
|
self.display_cameras = display_cameras
|
||||||
|
|
||||||
|
# connect robot
|
||||||
|
if not self.robot.is_connected:
|
||||||
|
self.robot.connect()
|
||||||
|
|
||||||
|
# Dynamically determine observation and action spaces
|
||||||
|
self._setup_spaces()
|
||||||
|
|
||||||
|
self._initial_follower_position = robot.follower_arms["main"].read("Present_Position")
|
||||||
|
self.reset_follower_position = reset_follower_position
|
||||||
|
|
||||||
|
# Episode tracking
|
||||||
|
self.current_step = 0
|
||||||
|
self.episode_data = None
|
||||||
|
|
||||||
|
def _setup_spaces(self):
|
||||||
|
"""
|
||||||
|
Dynamically determine observation and action spaces based on robot capabilities.
|
||||||
|
|
||||||
|
This method should be customized based on the specific robot's observation
|
||||||
|
and action representations.
|
||||||
|
"""
|
||||||
|
# Example space setup - you'll need to adapt this to your specific robot
|
||||||
|
example_obs = self.robot.capture_observation()
|
||||||
|
|
||||||
|
# Observation space (assuming image-based observations)
|
||||||
|
image_keys = [key for key in example_obs if "image" in key]
|
||||||
|
state_keys = [key for key in example_obs if "image" not in key]
|
||||||
|
observation_spaces = {
|
||||||
|
key: gym.spaces.Box(low=0, high=255, shape=example_obs[key].shape, dtype=np.uint8)
|
||||||
|
for key in image_keys
|
||||||
|
}
|
||||||
|
observation_spaces["observation.state"] = gym.spaces.Dict(
|
||||||
|
{
|
||||||
|
key: gym.spaces.Box(low=0, high=10, shape=example_obs[key].shape, dtype=np.float32)
|
||||||
|
for key in state_keys
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
self.observation_space = gym.spaces.Dict(observation_spaces)
|
||||||
|
|
||||||
|
# Action space (assuming joint positions)
|
||||||
|
action_dim = len(self.robot.follower_arms["main"].read("Present_Position"))
|
||||||
|
self.action_space = gym.spaces.Tuple(
|
||||||
|
(
|
||||||
|
gym.spaces.Box(low=-np.inf, high=np.inf, shape=(action_dim,), dtype=np.float32),
|
||||||
|
gym.spaces.Discrete(2),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
def reset(self, seed=None, options=None) -> Tuple[Dict[str, np.ndarray], Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Reset the environment to initial state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
observation (dict): Initial observation
|
||||||
|
info (dict): Additional information
|
||||||
|
"""
|
||||||
|
super().reset(seed=seed, options=options)
|
||||||
|
|
||||||
|
if self.reset_follower_position:
|
||||||
|
reset_follower_position(self.robot, target_position=self._initial_follower_position)
|
||||||
|
|
||||||
|
# Capture initial observation
|
||||||
|
observation = self.robot.capture_observation()
|
||||||
|
|
||||||
|
# Reset tracking variables
|
||||||
|
self.current_step = 0
|
||||||
|
self.episode_data = None
|
||||||
|
|
||||||
|
return observation, {}
|
||||||
|
|
||||||
|
def step(
|
||||||
|
self, action: Tuple[np.ndarray, bool]
|
||||||
|
) -> Tuple[Dict[str, np.ndarray], float, bool, bool, Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Take a step in the environment.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
action tuple(np.ndarray, bool):
|
||||||
|
Policy action to be executed on the robot and boolean to determine
|
||||||
|
whether to choose policy action or expert action.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
observation (dict): Next observation
|
||||||
|
reward (float): Reward for this step
|
||||||
|
terminated (bool): Whether the episode has terminated
|
||||||
|
truncated (bool): Whether the episode was truncated
|
||||||
|
info (dict): Additional information
|
||||||
|
"""
|
||||||
|
# The actions recieved are the in form of a tuple containing the policy action and an intervention bool
|
||||||
|
# The boolean inidicated whether we will use the expert's actions (through teleoperation) or the policy actions
|
||||||
|
policy_action, intervention_bool = action
|
||||||
|
teleop_action = None
|
||||||
|
if not intervention_bool:
|
||||||
|
self.robot.send_action(policy_action.cpu().numpy())
|
||||||
|
observation = self.robot.capture_observation()
|
||||||
|
else:
|
||||||
|
observation, teleop_action = self.robot.teleop_step(record_data=True)
|
||||||
|
teleop_action = teleop_action["action"] # teleop step returns torch tensors but in a dict
|
||||||
|
|
||||||
|
self.current_step += 1
|
||||||
|
|
||||||
|
reward = 0.0
|
||||||
|
terminated = False
|
||||||
|
truncated = False
|
||||||
|
|
||||||
|
return observation, reward, terminated, truncated, {"action": teleop_action}
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
"""
|
||||||
|
Render the environment (in this case, display camera feeds).
|
||||||
|
"""
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
observation = self.robot.capture_observation()
|
||||||
|
image_keys = [key for key in observation if "image" in key]
|
||||||
|
|
||||||
|
for key in image_keys:
|
||||||
|
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
|
||||||
|
|
||||||
|
cv2.waitKey(1)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
"""
|
||||||
|
Close the environment and disconnect the robot.
|
||||||
|
"""
|
||||||
|
if self.robot.is_connected:
|
||||||
|
self.robot.disconnect()
|
||||||
|
|
||||||
|
|
||||||
|
class HILSerlTimeLimitWrapper(gym.Wrapper):
|
||||||
|
def __init__(self, env, control_time_s, fps):
|
||||||
|
self.env = env
|
||||||
|
self.control_time_s = control_time_s
|
||||||
|
self.fps = fps
|
||||||
|
|
||||||
|
self.last_timestamp = 0.0
|
||||||
|
self.episode_time_in_s = 0.0
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
ret = self.env.step(action)
|
||||||
|
time_since_last_step = time.perf_counter() - self.last_timestamp
|
||||||
|
self.episode_time_in_s += time_since_last_step
|
||||||
|
self.last_timestamp = time.perf_counter()
|
||||||
|
|
||||||
|
# check if last timestep took more time than the expected fps
|
||||||
|
if 1.0 / time_since_last_step > self.fps:
|
||||||
|
logging.warning(f"Current timestep exceeded expected fps {self.fps}")
|
||||||
|
|
||||||
|
if self.episode_time_in_s > self.control_time_s:
|
||||||
|
# Terminated = True
|
||||||
|
ret[2] = True
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def reset(self, seed=None, options=None):
|
||||||
|
self.episode_time_in_s = 0.0
|
||||||
|
self.last_timestamp = time.perf_counter()
|
||||||
|
return self.env.reset(seed, options=None)
|
||||||
|
|
||||||
|
|
||||||
|
class HILSerlRewardWrapper(gym.Wrapper):
|
||||||
|
def __init__(self, env, reward_classifier: Optional[None], device: torch.device = "cuda"):
|
||||||
|
self.env = env
|
||||||
|
self.reward_classifier = reward_classifier
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
observation, _, terminated, truncated, info = self.env.step(action)
|
||||||
|
images = [
|
||||||
|
observation[key].to(self.device, non_blocking=True) for key in observation if "image" in key
|
||||||
|
]
|
||||||
|
reward = self.reward_classifier.predict_reward(images) if self.reward_classifier is not None else 0.0
|
||||||
|
reward = reward.item()
|
||||||
|
return observation, reward, terminated, truncated, info
|
||||||
|
|
||||||
|
def reset(self, seed=None, options=None):
|
||||||
|
return self.env.reset(seed=seed, options=options)
|
||||||
|
|
||||||
|
|
||||||
|
class HILSerlImageCropResizeWrapper(gym.Wrapper):
|
||||||
|
def __init__(self, env, crop_params_dict: Dict[str, Annotated[Tuple[int], 4]], resize_size=None):
|
||||||
|
self.env = env
|
||||||
|
self.crop_params_dict = crop_params_dict
|
||||||
|
for key in crop_params_dict:
|
||||||
|
assert key in self.env.observation_space, f"Key {key} not in observation space"
|
||||||
|
top, left, height, width = crop_params_dict[key]
|
||||||
|
new_shape = (top + height, left + width)
|
||||||
|
self.observation_space[key] = gym.spaces.Box(low=0, high=255, shape=new_shape)
|
||||||
|
|
||||||
|
self.resize_size = resize_size
|
||||||
|
if self.resize_size is None:
|
||||||
|
self.resize_size = (128, 128)
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
obs, reward, terminated, truncated, info = self.env.step(action)
|
||||||
|
for k in self.crop_params_dict:
|
||||||
|
obs[k] = F.crop(obs[k], *self.crop_params_dict[k])
|
||||||
|
obs[k] = F.resize(obs[k], self.resize_size)
|
||||||
|
return obs, reward, terminated, truncated, info
|
||||||
|
|
||||||
|
|
||||||
|
class ConvertToLeRobotObservation(gym.ObservationWrapper):
|
||||||
|
def __init__(self, env, device):
|
||||||
|
super().__init__(env)
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def observation(self, observation):
|
||||||
|
observation = preprocess_observation(observation)
|
||||||
|
|
||||||
|
observation = {key: observation[key].to(self.device, non_blocking=True) for key in observation}
|
||||||
|
observation = {k: torch.tensor(v, device=self.device) for k, v in observation.items()}
|
||||||
|
return observation
|
||||||
|
|
||||||
|
|
||||||
|
def make_robot_env(
|
||||||
|
robot,
|
||||||
|
reward_classifier,
|
||||||
|
crop_params_dict=None,
|
||||||
|
fps=30,
|
||||||
|
control_time_s=20,
|
||||||
|
reset_follower_pos=True,
|
||||||
|
display_cameras=False,
|
||||||
|
device="cuda:0",
|
||||||
|
resize_size=None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Factory function to create the robot environment.
|
||||||
|
|
||||||
|
Mimics gym.make() for consistent environment creation.
|
||||||
|
"""
|
||||||
|
env = HILSerlRobotEnv(robot, reset_follower_pos, display_cameras)
|
||||||
|
env = ConvertToLeRobotObservation(env, device)
|
||||||
|
if crop_params_dict is not None:
|
||||||
|
env = HILSerlImageCropResizeWrapper(env, crop_params_dict, resize_size=resize_size)
|
||||||
|
env = HILSerlRewardWrapper(env, reward_classifier)
|
||||||
|
env = HILSerlTimeLimitWrapper(env, control_time_s, fps)
|
||||||
|
return env
|
||||||
|
|
||||||
|
|
||||||
|
def get_classifier(pretrained_path, config_path, device="mps"):
|
||||||
|
if pretrained_path is None or config_path is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
from lerobot.common.policies.factory import _policy_cfg_from_hydra_cfg
|
||||||
|
from lerobot.common.policies.hilserl.classifier.configuration_classifier import ClassifierConfig
|
||||||
|
from lerobot.common.policies.hilserl.classifier.modeling_classifier import Classifier
|
||||||
|
|
||||||
|
cfg = init_hydra_config(config_path)
|
||||||
|
|
||||||
|
classifier_config = _policy_cfg_from_hydra_cfg(ClassifierConfig, cfg)
|
||||||
|
classifier_config.num_cameras = len(cfg.training.image_keys) # TODO automate these paths
|
||||||
|
model = Classifier(classifier_config)
|
||||||
|
model.load_state_dict(Classifier.from_pretrained(pretrained_path).state_dict())
|
||||||
|
model = model.to(device)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--fps", type=int, default=30, help="control frequency")
|
||||||
|
parser.add_argument(
|
||||||
|
"--robot-path",
|
||||||
|
type=str,
|
||||||
|
default="lerobot/configs/robot/koch.yaml",
|
||||||
|
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--robot-overrides",
|
||||||
|
type=str,
|
||||||
|
nargs="*",
|
||||||
|
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-p",
|
||||||
|
"--pretrained-policy-name-or-path",
|
||||||
|
help=(
|
||||||
|
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
|
||||||
|
"saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch "
|
||||||
|
"(useful for debugging). This argument is mutually exclusive with `--config`."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--config",
|
||||||
|
help=(
|
||||||
|
"Path to a yaml config you want to use for initializing a policy from scratch (useful for "
|
||||||
|
"debugging). This argument is mutually exclusive with `--pretrained-policy-name-or-path` (`-p`)."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--display-cameras", help=("Whether to display the camera feed while the rollout is happening")
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--reward-classifier-pretrained-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to the pretrained classifier weights.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--reward-classifier-config-file",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to a yaml config file that is necessary to build the reward classifier model.",
|
||||||
|
)
|
||||||
|
parser.add_argument("--control-time-s", type=float, default=20, help="Maximum episode length in seconds")
|
||||||
|
parser.add_argument("--reset-follower-pos", type=int, default=1, help="Reset follower between episodes")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
robot_cfg = init_hydra_config(args.robot_path, args.robot_overrides)
|
||||||
|
robot = make_robot(robot_cfg)
|
||||||
|
|
||||||
|
reward_classifier = get_classifier(
|
||||||
|
args.reward_classifier_pretrained_path, args.reward_classifier_config_file
|
||||||
|
)
|
||||||
|
|
||||||
|
env = make_robot_env(
|
||||||
|
robot,
|
||||||
|
reward_classifier,
|
||||||
|
None,
|
||||||
|
args.fps,
|
||||||
|
args.control_time_s,
|
||||||
|
args.reset_follower_pos,
|
||||||
|
args.display_cameras,
|
||||||
|
device="mps",
|
||||||
|
)
|
||||||
|
|
||||||
|
env.reset()
|
||||||
|
while True:
|
||||||
|
intervention_action = (None, True)
|
||||||
|
obs, reward, terminated, truncated, info = env.step(intervention_action)
|
||||||
|
if terminated or truncated:
|
||||||
|
logging.info("Max control time reached, reset environment.")
|
||||||
|
env.reset()
|
Loading…
Reference in New Issue