Updated formatting
This commit is contained in:
parent
31e3c82386
commit
22bd1f0669
|
@ -47,11 +47,15 @@ class RandomSubsetApply(Transform):
|
|||
|
||||
def make_transforms(cfg):
|
||||
image_transforms = []
|
||||
if 'colorjitter' in cfg.list:
|
||||
image_transforms.append(v2.ColorJitter(brightness=cfg.colorjitter_factor, contrast=cfg.colorjitter_factor))
|
||||
if 'sharpness' in cfg.list:
|
||||
if "colorjitter" in cfg.list:
|
||||
image_transforms.append(
|
||||
v2.ColorJitter(brightness=cfg.colorjitter_factor, contrast=cfg.colorjitter_factor)
|
||||
)
|
||||
if "sharpness" in cfg.list:
|
||||
image_transforms.append(v2.RandomAdjustSharpness(cfg.sharpness_factor, p=cfg.sharpness_p))
|
||||
if 'blur' in cfg.list:
|
||||
if "blur" in cfg.list:
|
||||
image_transforms.append(v2.RandomAdjustSharpness(cfg.blur_factor, p=cfg.blur_p))
|
||||
|
||||
return v2.Compose([RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)])
|
||||
return v2.Compose(
|
||||
[RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)]
|
||||
)
|
||||
|
|
|
@ -64,10 +64,10 @@ image_transform:
|
|||
colorjitter_p: 1.O
|
||||
sharpness_factor: 3.0
|
||||
# Should be more than 1, setting parameter to 1 does not change the image
|
||||
sharpness_p: 0.5
|
||||
sharpness_p: 0.5
|
||||
blur_factor: 0.2
|
||||
# Should be less than 1, setting parameter to 1 does not change the image
|
||||
blur_p: 0.5
|
||||
blur_p: 0.5
|
||||
n_subset: 3
|
||||
# Maximum number of transforms to apply
|
||||
list: ["colorjitter", "sharpness", "blur"]
|
||||
|
|
|
@ -1,15 +1,14 @@
|
|||
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.transforms import make_transforms
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.transforms import make_transforms
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
DEFAULT_CONFIG_PATH = "configs/default.yaml"
|
||||
|
||||
|
||||
def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/show_image_transforms"):
|
||||
"""
|
||||
Apply a series of image transformations to a frame from a dataset and save the transformed images.
|
||||
|
@ -20,7 +19,7 @@ def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/sho
|
|||
episode_index (int, optional): The index of the episode to use. Defaults to 0.
|
||||
output_dir (str, optional): The directory to save the transformed images. Defaults to "outputs/show_image_transforms".
|
||||
"""
|
||||
|
||||
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
|
||||
print(f"Getting frame from camera: {dataset.camera_keys[0]}")
|
||||
|
@ -41,25 +40,27 @@ def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/sho
|
|||
"image_transform.enable=True",
|
||||
"image_transform.n_subset=1",
|
||||
f"image_transform.{transform}_p=1",
|
||||
])
|
||||
|
||||
],
|
||||
)
|
||||
|
||||
cfg = cfg.image_transform
|
||||
|
||||
t = make_transforms(cfg)
|
||||
|
||||
|
||||
# Apply transformation to frame
|
||||
transformed_frame = t(frame)
|
||||
transformed_frame = transformed_frame.permute(1, 2, 0).numpy()
|
||||
|
||||
# Save transformed frame
|
||||
plt.imshow(transformed_frame)
|
||||
plt.savefig(f'{base_filename}_max_transform_{transform}.png')
|
||||
plt.savefig(f"{base_filename}_max_transform_{transform}.png")
|
||||
plt.close()
|
||||
|
||||
frame = frame.permute(1, 2, 0).numpy()
|
||||
|
||||
# Save original frame
|
||||
plt.imshow(frame)
|
||||
plt.savefig(f'{base_filename}_original.png')
|
||||
plt.savefig(f"{base_filename}_original.png")
|
||||
plt.close()
|
||||
|
||||
print(f"Saved transformed images.")
|
||||
print("Saved transformed images.")
|
||||
|
|
Loading…
Reference in New Issue