Updated formatting

This commit is contained in:
Marina Barannikov 2024-06-04 12:06:36 +00:00
parent 31e3c82386
commit 22bd1f0669
3 changed files with 24 additions and 19 deletions

View File

@ -47,11 +47,15 @@ class RandomSubsetApply(Transform):
def make_transforms(cfg): def make_transforms(cfg):
image_transforms = [] image_transforms = []
if 'colorjitter' in cfg.list: if "colorjitter" in cfg.list:
image_transforms.append(v2.ColorJitter(brightness=cfg.colorjitter_factor, contrast=cfg.colorjitter_factor)) image_transforms.append(
if 'sharpness' in cfg.list: v2.ColorJitter(brightness=cfg.colorjitter_factor, contrast=cfg.colorjitter_factor)
)
if "sharpness" in cfg.list:
image_transforms.append(v2.RandomAdjustSharpness(cfg.sharpness_factor, p=cfg.sharpness_p)) image_transforms.append(v2.RandomAdjustSharpness(cfg.sharpness_factor, p=cfg.sharpness_p))
if 'blur' in cfg.list: if "blur" in cfg.list:
image_transforms.append(v2.RandomAdjustSharpness(cfg.blur_factor, p=cfg.blur_p)) image_transforms.append(v2.RandomAdjustSharpness(cfg.blur_factor, p=cfg.blur_p))
return v2.Compose([RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)]) return v2.Compose(
[RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)]
)

View File

@ -1,15 +1,14 @@
from lerobot.common.utils.utils import init_hydra_config
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.transforms import make_transforms
from pathlib import Path from pathlib import Path
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.transforms import make_transforms
from lerobot.common.utils.utils import init_hydra_config
DEFAULT_CONFIG_PATH = "configs/default.yaml" DEFAULT_CONFIG_PATH = "configs/default.yaml"
def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/show_image_transforms"): def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/show_image_transforms"):
""" """
Apply a series of image transformations to a frame from a dataset and save the transformed images. Apply a series of image transformations to a frame from a dataset and save the transformed images.
@ -41,7 +40,8 @@ def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/sho
"image_transform.enable=True", "image_transform.enable=True",
"image_transform.n_subset=1", "image_transform.n_subset=1",
f"image_transform.{transform}_p=1", f"image_transform.{transform}_p=1",
]) ],
)
cfg = cfg.image_transform cfg = cfg.image_transform
@ -53,13 +53,14 @@ def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/sho
# Save transformed frame # Save transformed frame
plt.imshow(transformed_frame) plt.imshow(transformed_frame)
plt.savefig(f'{base_filename}_max_transform_{transform}.png') plt.savefig(f"{base_filename}_max_transform_{transform}.png")
plt.close() plt.close()
frame = frame.permute(1, 2, 0).numpy() frame = frame.permute(1, 2, 0).numpy()
# Save original frame # Save original frame
plt.imshow(frame) plt.imshow(frame)
plt.savefig(f'{base_filename}_original.png') plt.savefig(f"{base_filename}_original.png")
plt.close() plt.close()
print(f"Saved transformed images.") print("Saved transformed images.")