[viz] Fixes & updates to html visualizer (#617)

This commit is contained in:
Mishig 2025-01-09 11:39:54 +01:00 committed by GitHub
parent b8b368310c
commit 25a8597680
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 56 additions and 46 deletions

View File

@ -232,69 +232,54 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
"""Get a csv str containing timeseries data of an episode (e.g. state and action).
This file will be loaded by Dygraph javascript to plot data in real time."""
columns = []
has_state = "observation.state" in dataset.features
has_action = "action" in dataset.features
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"]
selected_columns.remove("timestamp")
# init header of csv with state and action names
header = ["timestamp"]
if has_state:
for column_name in selected_columns:
dim_state = (
dataset.meta.shapes["observation.state"][0]
dataset.meta.shapes[column_name][0]
if isinstance(dataset, LeRobotDataset)
else dataset.features["observation.state"].shape[0]
else dataset.features[column_name].shape[0]
)
header += [f"state_{i}" for i in range(dim_state)]
column_names = dataset.features["observation.state"]["names"]
while not isinstance(column_names, list):
column_names = list(column_names.values())[0]
columns.append({"key": "state", "value": column_names})
if has_action:
dim_action = (
dataset.meta.shapes["action"][0]
if isinstance(dataset, LeRobotDataset)
else dataset.features.action.shape[0]
)
header += [f"action_{i}" for i in range(dim_action)]
column_names = dataset.features["action"]["names"]
while not isinstance(column_names, list):
column_names = list(column_names.values())[0]
columns.append({"key": "action", "value": column_names})
header += [f"{column_name}_{i}" for i in range(dim_state)]
if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]:
column_names = dataset.features[column_name]["names"]
while not isinstance(column_names, list):
column_names = list(column_names.values())[0]
else:
column_names = [f"motor_{i}" for i in range(dim_state)]
columns.append({"key": column_name, "value": column_names})
selected_columns.insert(0, "timestamp")
if isinstance(dataset, LeRobotDataset):
from_idx = dataset.episode_data_index["from"][episode_index]
to_idx = dataset.episode_data_index["to"][episode_index]
selected_columns = ["timestamp"]
if has_state:
selected_columns += ["observation.state"]
if has_action:
selected_columns += ["action"]
data = (
dataset.hf_dataset.select(range(from_idx, to_idx))
.select_columns(selected_columns)
.with_format("numpy")
.with_format("pandas")
)
rows = np.hstack(
(np.expand_dims(data["timestamp"], axis=1), *[data[col] for col in selected_columns[1:]])
).tolist()
else:
repo_id = dataset.repo_id
selected_columns = ["timestamp"]
if "observation.state" in dataset.features:
selected_columns.append("observation.state")
if "action" in dataset.features:
selected_columns.append("action")
url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format(
episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index
)
df = pd.read_parquet(url)
data = df[selected_columns] # Select specific columns
rows = np.hstack(
(
np.expand_dims(data["timestamp"], axis=1),
*[np.vstack(data[col]) for col in selected_columns[1:]],
)
).tolist()
rows = np.hstack(
(
np.expand_dims(data["timestamp"], axis=1),
*[np.vstack(data[col]) for col in selected_columns[1:]],
)
).tolist()
# Convert data to CSV string
csv_buffer = StringIO()
@ -379,10 +364,6 @@ def visualize_dataset_html(
template_folder=template_dir,
)
else:
image_keys = dataset.meta.image_keys if isinstance(dataset, LeRobotDataset) else []
if len(image_keys) > 0:
raise NotImplementedError(f"Image keys ({image_keys=}) are currently not supported.")
# Create a simlink from the dataset video folder containg mp4 files to the output directory
# so that the http server can get access to the mp4 files.
if isinstance(dataset, LeRobotDataset):

View File

@ -98,9 +98,34 @@
</div>
<!-- Videos -->
<div class="max-w-32 relative text-sm mb-4 select-none"
@click.outside="isVideosDropdownOpen = false">
<div
@click="isVideosDropdownOpen = !isVideosDropdownOpen"
class="p-2 border border-slate-500 rounded flex justify-between items-center cursor-pointer"
>
<span class="truncate">filter videos</span>
<div class="transition-transform" :class="{ 'rotate-180': isVideosDropdownOpen }">🔽</div>
</div>
<div x-show="isVideosDropdownOpen"
class="absolute mt-1 border border-slate-500 rounded shadow-lg z-10">
<div>
<template x-for="option in videosKeys" :key="option">
<div
@click="videosKeysSelected = videosKeysSelected.includes(option) ? videosKeysSelected.filter(v => v !== option) : [...videosKeysSelected, option]"
class="p-2 cursor-pointer bg-slate-900"
:class="{ 'bg-slate-700': videosKeysSelected.includes(option) }"
x-text="option"
></div>
</template>
</div>
</div>
</div>
<div class="flex flex-wrap gap-x-2 gap-y-6">
{% for video_info in videos_info %}
<div x-show="!videoCodecError" class="max-w-96 relative">
<div x-show="!videoCodecError && videosKeysSelected.includes('{{ video_info.filename }}')" class="max-w-96 relative">
<p class="absolute inset-x-0 -top-4 text-sm text-gray-300 bg-gray-800 px-2 rounded-t-xl truncate">{{ video_info.filename }}</p>
<video muted loop type="video/mp4" class="object-contain w-full h-full" @canplaythrough="videoCanPlay" @timeupdate="() => {
if (video.duration) {
@ -250,6 +275,9 @@
nVideos: {{ videos_info | length }},
nVideoReadyToPlay: 0,
videoCodecError: false,
isVideosDropdownOpen: false,
videosKeys: {{ videos_info | map(attribute='filename') | list | tojson }},
videosKeysSelected: [],
columns: {{ columns | tojson }},
rowLabels: {{ columns | tojson }}.reduce((colA, colB) => colA.value.length > colB.value.length ? colA : colB).value,
@ -261,6 +289,7 @@
if(!canPlayVideos){
this.videoCodecError = true;
}
this.videosKeysSelected = this.videosKeys.map(opt => opt)
// process CSV data
const csvDataStr = {{ episode_data_csv_str|tojson|safe }};