diff --git a/tests/scripts/save_policy_to_safetensor.py b/tests/scripts/save_policy_to_safetensor.py index 81748db1..3f614985 100644 --- a/tests/scripts/save_policy_to_safetensor.py +++ b/tests/scripts/save_policy_to_safetensor.py @@ -1,10 +1,98 @@ import shutil from pathlib import Path +import torch +from safetensors.torch import save_file -def save_policy_to_safetensors(output_dir, repo_id="lerobot/pusht"): - ... - repo_dir = Path(output_dir) / repo_id +from lerobot.common.datasets.factory import make_dataset +from lerobot.common.policies.factory import make_policy +from lerobot.common.utils.utils import init_hydra_config, set_global_seed +from lerobot.scripts.train import make_optimizer +from tests.utils import DEFAULT_CONFIG_PATH, DEVICE - if repo_dir.exists(): - shutil.rmtree(repo_dir) + +def get_policy_stats(env_name, policy_name): + cfg = init_hydra_config( + DEFAULT_CONFIG_PATH, + overrides=[ + f"env={env_name}", + f"policy={policy_name}", + f"device={DEVICE}", + ], + ) + set_global_seed(1337) + dataset = make_dataset(cfg) + policy = make_policy(cfg, dataset_stats=dataset.stats) + policy.train() + policy.to(DEVICE) + optimizer, _ = make_optimizer(cfg, policy) + + dataloader = torch.utils.data.DataLoader( + dataset, + num_workers=0, + batch_size=cfg.training.batch_size, + shuffle=False, + ) + + batch = next(iter(dataloader)) + output_dict = policy.forward(batch) + loss = output_dict["loss"] + # TODO Check output dict values + + loss.backward() + grad_stats = {} + for key, param in policy.named_parameters(): + if param.requires_grad: + grad_stats[f"{key}_mean"] = param.grad.mean() + grad_stats[f"{key}_std"] = param.grad.std() + + optimizer.step() + param_stats = {} + for key, param in policy.named_parameters(): + param_stats[f"{key}_mean"] = param.mean() + param_stats[f"{key}_std"] = param.std() + + optimizer.zero_grad() + policy.reset() + + dataset.delta_timestamps = None + batch = next(iter(dataloader)) + obs = { + k: batch[k] + for k in batch + if k in ["observation.image", "observation.images.top", "observation.state"] + } + + # TODO(aliberts): refacor `select_action` methods so that it expects `obs` instead of `batch` + # if policy_name == "diffusion": + # obs = {k: batch[k] for k in ["observation.image", "observation.state"]} + + actions = {str(i): policy.select_action(obs).contiguous() for i in range(cfg.policy.n_action_steps)} + return grad_stats, param_stats, actions + + +def save_policy_to_safetensors(output_dir, env_name, policy_name): + env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}" + + if env_policy_dir.exists(): + shutil.rmtree(env_policy_dir) + + env_policy_dir.mkdir(parents=True, exist_ok=True) + grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name) + save_file(grad_stats, env_policy_dir / "grad_stats") + save_file(param_stats, env_policy_dir / "param_stats") + save_file(actions, env_policy_dir / "actions") + + +if __name__ == "__main__": + env_policies = [ + # ("xarm", "tdmpc", ["policy.mpc=true"]), + # ("pusht", "tdmpc", ["policy.mpc=false"]), + ( + "pusht", + "diffusion", + ), + # ("aloha", "act"), + ] + for env, policy in env_policies: + save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy)