Add get_policy_stats
This commit is contained in:
parent
6e15e9664b
commit
2726d1a6c9
|
@ -1,10 +1,98 @@
|
||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import save_file
|
||||||
|
|
||||||
def save_policy_to_safetensors(output_dir, repo_id="lerobot/pusht"):
|
from lerobot.common.datasets.factory import make_dataset
|
||||||
...
|
from lerobot.common.policies.factory import make_policy
|
||||||
repo_dir = Path(output_dir) / repo_id
|
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
|
||||||
|
from lerobot.scripts.train import make_optimizer
|
||||||
|
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||||
|
|
||||||
if repo_dir.exists():
|
|
||||||
shutil.rmtree(repo_dir)
|
def get_policy_stats(env_name, policy_name):
|
||||||
|
cfg = init_hydra_config(
|
||||||
|
DEFAULT_CONFIG_PATH,
|
||||||
|
overrides=[
|
||||||
|
f"env={env_name}",
|
||||||
|
f"policy={policy_name}",
|
||||||
|
f"device={DEVICE}",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
set_global_seed(1337)
|
||||||
|
dataset = make_dataset(cfg)
|
||||||
|
policy = make_policy(cfg, dataset_stats=dataset.stats)
|
||||||
|
policy.train()
|
||||||
|
policy.to(DEVICE)
|
||||||
|
optimizer, _ = make_optimizer(cfg, policy)
|
||||||
|
|
||||||
|
dataloader = torch.utils.data.DataLoader(
|
||||||
|
dataset,
|
||||||
|
num_workers=0,
|
||||||
|
batch_size=cfg.training.batch_size,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
batch = next(iter(dataloader))
|
||||||
|
output_dict = policy.forward(batch)
|
||||||
|
loss = output_dict["loss"]
|
||||||
|
# TODO Check output dict values
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
grad_stats = {}
|
||||||
|
for key, param in policy.named_parameters():
|
||||||
|
if param.requires_grad:
|
||||||
|
grad_stats[f"{key}_mean"] = param.grad.mean()
|
||||||
|
grad_stats[f"{key}_std"] = param.grad.std()
|
||||||
|
|
||||||
|
optimizer.step()
|
||||||
|
param_stats = {}
|
||||||
|
for key, param in policy.named_parameters():
|
||||||
|
param_stats[f"{key}_mean"] = param.mean()
|
||||||
|
param_stats[f"{key}_std"] = param.std()
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
policy.reset()
|
||||||
|
|
||||||
|
dataset.delta_timestamps = None
|
||||||
|
batch = next(iter(dataloader))
|
||||||
|
obs = {
|
||||||
|
k: batch[k]
|
||||||
|
for k in batch
|
||||||
|
if k in ["observation.image", "observation.images.top", "observation.state"]
|
||||||
|
}
|
||||||
|
|
||||||
|
# TODO(aliberts): refacor `select_action` methods so that it expects `obs` instead of `batch`
|
||||||
|
# if policy_name == "diffusion":
|
||||||
|
# obs = {k: batch[k] for k in ["observation.image", "observation.state"]}
|
||||||
|
|
||||||
|
actions = {str(i): policy.select_action(obs).contiguous() for i in range(cfg.policy.n_action_steps)}
|
||||||
|
return grad_stats, param_stats, actions
|
||||||
|
|
||||||
|
|
||||||
|
def save_policy_to_safetensors(output_dir, env_name, policy_name):
|
||||||
|
env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}"
|
||||||
|
|
||||||
|
if env_policy_dir.exists():
|
||||||
|
shutil.rmtree(env_policy_dir)
|
||||||
|
|
||||||
|
env_policy_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name)
|
||||||
|
save_file(grad_stats, env_policy_dir / "grad_stats")
|
||||||
|
save_file(param_stats, env_policy_dir / "param_stats")
|
||||||
|
save_file(actions, env_policy_dir / "actions")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
env_policies = [
|
||||||
|
# ("xarm", "tdmpc", ["policy.mpc=true"]),
|
||||||
|
# ("pusht", "tdmpc", ["policy.mpc=false"]),
|
||||||
|
(
|
||||||
|
"pusht",
|
||||||
|
"diffusion",
|
||||||
|
),
|
||||||
|
# ("aloha", "act"),
|
||||||
|
]
|
||||||
|
for env, policy in env_policies:
|
||||||
|
save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy)
|
||||||
|
|
Loading…
Reference in New Issue