wrap dm_control aloha into gymnasium (TODO: properly seeding the env)
This commit is contained in:
parent
26602269cd
commit
29032fbcd3
|
@ -1,22 +1,9 @@
|
|||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
BoundedTensorSpec,
|
||||
CompositeSpec,
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
from gymnasium import spaces
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
ACTIONS,
|
||||
ASSETS_DIR,
|
||||
|
@ -31,49 +18,67 @@ from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
|||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
from lerobot.common.utils import set_global_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gymnasium") is not None
|
||||
|
||||
|
||||
class AlohaEnv(AbstractEnv):
|
||||
name = "aloha"
|
||||
available_tasks = ["sim_insertion", "sim_transfer_cube"]
|
||||
_reset_warning_issued = False
|
||||
class AlohaEnv(gym.Env):
|
||||
metadata = {"render_modes": [], "render_fps": 50}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
obs_type="state",
|
||||
observation_width=640,
|
||||
observation_height=480,
|
||||
visualization_width=640,
|
||||
visualization_height=480,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gymnasium.")
|
||||
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError()
|
||||
super().__init__()
|
||||
self.task = task
|
||||
self.obs_type = obs_type
|
||||
self.observation_width = observation_width
|
||||
self.observation_height = observation_height
|
||||
self.visualization_width = visualization_width
|
||||
self.visualization_height = visualization_height
|
||||
|
||||
self._env = self._make_env_task(self.task)
|
||||
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
if self.obs_type == "state":
|
||||
raise NotImplementedError()
|
||||
self.observation_space = spaces.Box(
|
||||
low=np.array([0] * len(JOINTS)), # ???
|
||||
high=np.array([255] * len(JOINTS)), # ???
|
||||
dtype=np.float64,
|
||||
)
|
||||
elif self.obs_type == "pixels":
|
||||
self.observation_space = spaces.Box(
|
||||
low=0, high=255, shape=(self.observation_height, self.observation_width, 3), dtype=np.uint8
|
||||
)
|
||||
elif self.obs_type == "pixels_agent_pos":
|
||||
self.observation_space = spaces.Dict(
|
||||
{
|
||||
"pixels": spaces.Box(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=(self.observation_height, self.observation_width, 3),
|
||||
dtype=np.uint8,
|
||||
),
|
||||
"agent_pos": spaces.Box(
|
||||
low=np.array([-1] * len(JOINTS)), # ???
|
||||
high=np.array([1] * len(JOINTS)), # ???
|
||||
dtype=np.float64,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
self.action_space = spaces.Box(low=-1, high=1, shape=(len(ACTIONS),), dtype=np.float32)
|
||||
|
||||
def render(self, mode="rgb_array"):
|
||||
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
|
||||
if mode in ["visualize", "human"]:
|
||||
height, width = self.visualize_height, self.visualize_width
|
||||
elif mode == "rgb_array":
|
||||
height, width = self.observation_height, self.observation_width
|
||||
else:
|
||||
raise ValueError(mode)
|
||||
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
||||
return image
|
||||
|
||||
|
@ -81,20 +86,20 @@ class AlohaEnv(AbstractEnv):
|
|||
# time limit is controlled by StepCounter in env factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task_name:
|
||||
if "transfer_cube" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeTask(random=False)
|
||||
elif "sim_insertion" in task_name:
|
||||
elif "insertion" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionTask(random=False)
|
||||
elif "sim_end_effector_transfer_cube" in task_name:
|
||||
elif "end_effector_transfer_cube" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEndEffectorTask(random=False)
|
||||
elif "sim_end_effector_insertion" in task_name:
|
||||
elif "end_effector_insertion" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
|
@ -108,191 +113,55 @@ class AlohaEnv(AbstractEnv):
|
|||
return env
|
||||
|
||||
def _format_raw_obs(self, raw_obs):
|
||||
if self.from_pixels:
|
||||
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
||||
image = einops.rearrange(image, "h w c -> c h w")
|
||||
assert image.dtype == torch.uint8
|
||||
obs = {"image": {"top": image}}
|
||||
|
||||
if not self.pixels_only:
|
||||
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
|
||||
else:
|
||||
# TODO(rcadene):
|
||||
if self.obs_type == "state":
|
||||
raise NotImplementedError()
|
||||
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
|
||||
|
||||
elif self.obs_type == "pixels":
|
||||
obs = raw_obs["images"]["top"].copy()
|
||||
elif self.obs_type == "pixels_agent_pos":
|
||||
obs = {
|
||||
"pixels": raw_obs["images"]["top"].copy(),
|
||||
"agent_pos": raw_obs["qpos"],
|
||||
}
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
if tensordict is not None and not AlohaEnv._reset_warning_issued:
|
||||
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
|
||||
AlohaEnv._reset_warning_issued = True
|
||||
def reset(self, seed=None, options=None):
|
||||
super().reset(seed=seed)
|
||||
|
||||
# Seed the environment and update the seed to be used for the next reset.
|
||||
self._next_seed = self.set_seed(self._next_seed)
|
||||
# TODO(rcadene): how to seed the env?
|
||||
if seed is not None:
|
||||
set_global_seed(seed)
|
||||
self._env.task.random.seed(seed)
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
if "transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
elif "insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
else:
|
||||
raise ValueError(self.task)
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
observation = self._format_raw_obs(raw_obs.observation)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
info = {"is_success": False}
|
||||
return observation, info
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
def step(self, action):
|
||||
assert action.ndim == 1
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
|
||||
_, reward, _, raw_obs = self._env.step(action)
|
||||
|
||||
# TODO(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
terminated = is_success = reward == 4
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
info = {"is_success": is_success}
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([reward], dtype=torch.float32),
|
||||
# success and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
return td
|
||||
observation = self._format_raw_obs(raw_obs)
|
||||
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
from omegaconf import OmegaConf
|
||||
truncated = False
|
||||
return observation, reward, terminated, truncated, info
|
||||
|
||||
if self.from_pixels:
|
||||
if isinstance(self.image_size, int):
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
elif OmegaConf.is_list(self.image_size) or isinstance(self.image_size, list):
|
||||
assert len(self.image_size) == 3 # c h w
|
||||
assert self.image_size[0] == 3 # c is RGB
|
||||
image_shape = tuple(self.image_size)
|
||||
else:
|
||||
raise ValueError(self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = {
|
||||
"top": BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
}
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
self.observation_spec = CompositeSpec({"observation": obs})
|
||||
|
||||
# TODO(rcadene): valid when controling end effector?
|
||||
# action_space = self._env.action_spec()
|
||||
# self.action_spec = BoundedTensorSpec(
|
||||
# low=action_space.minimum,
|
||||
# high=action_space.maximum,
|
||||
# shape=action_space.shape,
|
||||
# dtype=torch.float32,
|
||||
# device=self.device,
|
||||
# )
|
||||
|
||||
# TODO(rcaene): add bounds (where are they????)
|
||||
self.action_spec = BoundedTensorSpec(
|
||||
shape=(len(ACTIONS)),
|
||||
low=-1,
|
||||
high=1,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.reward_spec = UnboundedContinuousTensorSpec(
|
||||
shape=(1,),
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.done_spec = CompositeSpec(
|
||||
{
|
||||
"done": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
"success": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_global_seed(seed)
|
||||
# TODO(rcadene): seed the env
|
||||
# self._env.seed(seed)
|
||||
logging.warning("Aloha env is not seeded")
|
||||
def close(self):
|
||||
pass
|
||||
|
|
|
@ -30,7 +30,14 @@ def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv:
|
|||
**kwargs,
|
||||
)
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.envs import aloha as gym_aloha # noqa: F401
|
||||
|
||||
kwargs["task"] = cfg.env.task
|
||||
|
||||
env_fn = lambda: gym.make( # noqa: E731
|
||||
"gym_aloha/AlohaInsertion-v0",
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
|
|
|
@ -41,25 +41,21 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
|||
# print("data from rollout:", simple_rollout(100))
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO")
|
||||
@pytest.mark.parametrize(
|
||||
"task,from_pixels,pixels_only",
|
||||
"env_task, obs_type",
|
||||
[
|
||||
("sim_insertion", True, False),
|
||||
("sim_insertion", True, True),
|
||||
("sim_transfer_cube", True, False),
|
||||
("sim_transfer_cube", True, True),
|
||||
# ("AlohaInsertion-v0", "state"),
|
||||
("AlohaInsertion-v0", "pixels"),
|
||||
("AlohaInsertion-v0", "pixels_agent_pos"),
|
||||
("AlohaTransferCube-v0", "pixels"),
|
||||
("AlohaTransferCube-v0", "pixels_agent_pos"),
|
||||
],
|
||||
)
|
||||
def test_aloha(task, from_pixels, pixels_only):
|
||||
env = AlohaEnv(
|
||||
task,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=[3, 480, 640] if from_pixels else None,
|
||||
)
|
||||
# print_spec_rollout(env)
|
||||
check_env_specs(env)
|
||||
def test_aloha(env_task, obs_type):
|
||||
from lerobot.common.envs import aloha as gym_aloha # noqa: F401
|
||||
env = gym.make(f"gym_aloha/{env_task}", obs_type=obs_type)
|
||||
check_env(env)
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
|
Loading…
Reference in New Issue