Add maniskill support.

Co-authored-by: Michel Aractingi <michel.aractingi@gmail.com>
This commit is contained in:
AdilZouitine 2025-02-14 19:53:29 +00:00
parent 7ae368e983
commit 2f3370e42f
6 changed files with 222 additions and 27 deletions

View File

@ -5,11 +5,16 @@ fps: 20
env:
name: maniskill/pushcube
task: PushCube-v1
image_size: 64
image_size: 128
control_mode: pd_ee_delta_pose
state_dim: 25
action_dim: 7
fps: ${fps}
obs: rgb
render_mode: rgb_array
render_size: 64
render_size: 128
device: cuda
reward_classifier:
pretrained_path: null
config_path: null

View File

@ -8,7 +8,7 @@
# env.gym.obs_type=environment_state_agent_pos \
seed: 1
dataset_repo_id: aractingi/hil-serl-maniskill-pushcube
dataset_repo_id: null
training:
# Offline training dataloader
@ -20,7 +20,7 @@ training:
lr: 3e-4
eval_freq: 2500
log_freq: 500
log_freq: 10
save_freq: 2000000
online_steps: 1000000
@ -52,14 +52,16 @@ policy:
n_action_steps: 1
shared_encoder: true
# vision_encoder_name: null
vision_encoder_name: null
# vision_encoder_name: "helper2424/resnet10"
# freeze_vision_encoder: true
freeze_vision_encoder: false
input_shapes:
# # TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.state: ["${env.state_dim}"]
observation.image: [3, 64, 64]
observation.image: [3, 128, 128]
output_shapes:
action: ["${env.action_dim}"]
action: [7]
# Normalization / Unnormalization
input_normalization_modes: null
@ -67,8 +69,8 @@ policy:
action: min_max
output_normalization_params:
action:
min: [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]
max: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
min: [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0]
max: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
# Architecture / modeling.
# Neural networks.
@ -88,14 +90,3 @@ policy:
actor_learner_config:
actor_ip: "127.0.0.1"
port: 50051
# # Loss coefficients.
# reward_coeff: 0.5
# expectile_weight: 0.9
# value_coeff: 0.1
# consistency_coeff: 20.0
# advantage_scaling: 3.0
# pi_coeff: 0.5
# temporal_decay_coeff: 0.5
# # Target model.
# target_model_momentum: 0.995

View File

@ -251,7 +251,7 @@ def act_with_policy(cfg: DictConfig, robot: Robot, reward_classifier: nn.Module)
sum_reward_episode += float(reward)
# NOTE: We overide the action if the intervention is True, because the action applied is the intervention action
if info["is_intervention"]:
if "is_intervention" in info and info["is_intervention"]:
# TODO: Check the shape
# NOTE: The action space for demonstration before hand is with the full action space
# but sometimes for example we want to deactivate the gripper
@ -348,10 +348,18 @@ def actor_cli(cfg: dict):
robot = make_robot(cfg=cfg.robot)
server_thread = Thread(target=serve_actor_service, args=(cfg.actor_learner_config.port,), daemon=True)
reward_classifier = get_classifier(
pretrained_path=cfg.env.reward_classifier.pretrained_path,
config_path=cfg.env.reward_classifier.config_path,
)
# HACK: FOR MANISKILL we do not have a reward classifier
# TODO: Remove this once we merge into main
reward_classifier = None
if (
cfg.env.reward_classifier.pretrained_path is not None
and cfg.env.reward_classifier.config_path is not None
):
reward_classifier = get_classifier(
pretrained_path=cfg.env.reward_classifier.pretrained_path,
config_path=cfg.env.reward_classifier.config_path,
)
policy_thread = Thread(
target=act_with_policy,
daemon=True,

View File

@ -13,6 +13,8 @@ from lerobot.common.envs.utils import preprocess_observation
from lerobot.common.robot_devices.control_utils import busy_wait, is_headless, reset_follower_position
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.utils.utils import init_hydra_config, log_say
from lerobot.scripts.server.maniskill_manipulator import make_maniskill
logging.basicConfig(level=logging.INFO)
@ -661,6 +663,9 @@ class BatchCompitableWrapper(gym.ObservationWrapper):
return observation
# TODO: REMOVE TH
def make_robot_env(
robot,
reward_classifier,
@ -679,7 +684,17 @@ def make_robot_env(
Returns:
A vectorized gym environment with all the necessary wrappers applied.
"""
if "maniskill" in cfg.name:
logging.warning("WE SHOULD REMOVE THE MANISKILL BEFORE THE MERGE INTO MAIN")
env = make_maniskill(
task=cfg.task,
obs_mode=cfg.obs,
control_mode=cfg.control_mode,
render_mode=cfg.render_mode,
sensor_configs={"width": cfg.render_size, "height": cfg.render_size},
device=cfg.device,
)
return env
# Create base environment
env = HILSerlRobotEnv(
robot=robot,

View File

@ -362,7 +362,7 @@ def add_actor_information_and_train(
# If cfg.resume, shift the interaction step with the last checkpointed step in order to not break the logging
interaction_message["Interaction step"] += interaction_step_shift
logger.log_dict(interaction_message, mode="train", custom_step_key="Interaction step")
logging.info(f"Interaction message: {interaction_message}")
# logging.info(f"Interaction message: {interaction_message}")
if len(replay_buffer) < cfg.training.online_step_before_learning:
continue

View File

@ -0,0 +1,176 @@
import einops
import numpy as np
import gymnasium as gym
import torch
"""Make ManiSkill3 gym environment"""
from mani_skill.vector.wrappers.gymnasium import ManiSkillVectorEnv
def preprocess_maniskill_observation(observations: dict[str, np.ndarray]) -> dict[str, torch.Tensor]:
"""Convert environment observation to LeRobot format observation.
Args:
observation: Dictionary of observation batches from a Gym vector environment.
Returns:
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
"""
# map to expected inputs for the policy
return_observations = {}
# TODO: You have to merge all tensors from agent key and extra key
# You don't keep sensor param key in the observation
# And you keep sensor data rgb
q_pos = observations["agent"]["qpos"]
q_vel = observations["agent"]["qvel"]
tcp_pos = observations["extra"]["tcp_pose"]
img = observations["sensor_data"]["base_camera"]["rgb"]
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
state = torch.cat([q_pos, q_vel, tcp_pos], dim=-1)
return_observations["observation.image"] = img
return_observations["observation.state"] = state
return return_observations
class ManiSkillObservationWrapper(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
def observation(self, observation):
return preprocess_maniskill_observation(observation)
class ManiSkillToDeviceWrapper(gym.Wrapper):
def __init__(self, env, device: torch.device = "cuda"):
super().__init__(env)
self.device = device
def reset(self, seed=None, options=None):
obs, info = self.env.reset(seed=seed, options=options)
obs = {k: v.to(self.device) for k, v in obs.items()}
return obs, info
def step(self, action):
obs, reward, terminated, truncated, info = self.env.step(action)
obs = {k: v.to(self.device) for k, v in obs.items()}
return obs, reward, terminated, truncated, info
class ManiSkillCompat(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
def step(self, action):
obs, reward, terminated, truncated, info = self.env.step(action)
reward = reward.item()
terminated = terminated.item()
truncated = truncated.item()
return obs, reward, terminated, truncated, info
class ManiSkillActionWrapper(gym.ActionWrapper):
def __init__(self, env):
super().__init__(env)
self.action_space = gym.spaces.Tuple(spaces=(env.action_space, gym.spaces.Discrete(2)))
def action(self, action):
action, telop = action
return action
class ManiSkillMultiplyActionWrapper(gym.Wrapper):
def __init__(self, env, multiply_factor: float = 10):
super().__init__(env)
self.multiply_factor = multiply_factor
action_space_agent: gym.spaces.Box = env.action_space[0]
action_space_agent.low = action_space_agent.low * multiply_factor
action_space_agent.high = action_space_agent.high * multiply_factor
self.action_space = gym.spaces.Tuple(spaces=(action_space_agent, gym.spaces.Discrete(2)))
def step(self, action):
if isinstance(action, tuple):
action, telop = action
else:
telop = 0
action = action / self.multiply_factor
obs, reward, terminated, truncated, info = self.env.step((action, telop))
return obs, reward, terminated, truncated, info
def make_maniskill(
task: str = "PushCube-v1",
obs_mode: str = "rgb",
control_mode: str = "pd_ee_delta_pose",
render_mode: str = "rgb_array",
sensor_configs: dict[str, int] | None = None,
n_envs: int = 1,
device: torch.device = "cuda",
) -> gym.Env:
"""
Factory function to create a ManiSkill environment with standard wrappers.
Args:
task: Name of the ManiSkill task
obs_mode: Observation mode (rgb, rgbd, etc)
control_mode: Control mode for the robot
render_mode: Rendering mode
sensor_configs: Camera sensor configurations
n_envs: Number of parallel environments
Returns:
A wrapped ManiSkill environment
"""
if sensor_configs is None:
sensor_configs = {"width": 64, "height": 64}
env = gym.make(
task,
obs_mode=obs_mode,
control_mode=control_mode,
render_mode=render_mode,
sensor_configs=sensor_configs,
num_envs=n_envs,
)
env = ManiSkillCompat(env)
env = ManiSkillObservationWrapper(env)
env = ManiSkillActionWrapper(env)
env = ManiSkillMultiplyActionWrapper(env)
env = ManiSkillToDeviceWrapper(env, device=device)
return env
if __name__ == "__main__":
import argparse
import hydra
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="lerobot/configs/env/maniskill_example.yaml")
args = parser.parse_args()
# Initialize config
with hydra.initialize(version_base=None, config_path="../../configs"):
cfg = hydra.compose(config_name="env/maniskill_example.yaml")
env = make_maniskill(
task=cfg.env.task,
obs_mode=cfg.env.obs,
control_mode=cfg.env.control_mode,
render_mode=cfg.env.render_mode,
sensor_configs={"width": cfg.env.render_size, "height": cfg.env.render_size},
)
print("env done")
obs, info = env.reset()
random_action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(random_action)