Update Lekiwi with new MotorsBus

This commit is contained in:
Simon Alibert 2025-04-04 11:26:11 +02:00 committed by Steven Palma
parent 9a25b56438
commit 2f769f1ff6
No known key found for this signature in database
2 changed files with 123 additions and 164 deletions

View File

@ -22,7 +22,14 @@ from lerobot.common.robots.config import RobotConfig
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
id = "lekiwi"
port = "/dev/ttyACM0" # port to connect to the bus
disable_torque_on_disconnect: bool = True
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
@ -34,25 +41,3 @@ class LeKiwiRobotConfig(RobotConfig):
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
port_motor_bus = "/dev/ttyACM0"
# TODO(Steven): consider split this into arm and base
# TODO(Steven): Consider also removing this entirely as we can say that
# LeKiwiRobot will always have (and needs) such
shoulder_pan: tuple = (1, "sts3215")
shoulder_lift: tuple = (2, "sts3215")
elbow_flex: tuple = (3, "sts3215")
wrist_flex: tuple = (4, "sts3215")
wrist_roll: tuple = (5, "sts3215")
gripper: tuple = (6, "sts3215")
left_wheel: tuple = (7, "sts3215")
back_wheel: tuple = (8, "sts3215")
right_wheel: tuple = (9, "sts3215")
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None

View File

@ -15,31 +15,28 @@
# limitations under the License.
import base64
import json
import logging
import time
from typing import Any
import cv2
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import TorqueMode
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
apply_feetech_offsets_from_calibration,
run_full_arm_calibration,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_lekiwi import LeKiwiRobotConfig
logger = logging.getLogger(__name__)
# TODO(Steven): Everything in here is pretty much single-threaded and synchronous. The assumption is that we can run the loop at a
# high enough frequency to not need to worry about threading. This is a good assumption for now, but we should consider
# making this more robust in the future.
class LeKiwiRobot(Robot):
"""
The robot includes a three omniwheel mobile base and a remote follower arm.
@ -55,43 +52,33 @@ class LeKiwiRobot(Robot):
super().__init__(config)
self.config = config
self.id = config.id
# TODO(Steven): Consider in the future using S100 robot class
# TODO(Steven): Another option is to use the motorbus factory, but in this case we assume that
# what we consider 'lekiwi robot' always uses the FeetechMotorsBus
# TODO(Steven): Order and dimension are generally assumed to be 6 first for arm, 3 last for base
self.actuators_bus = FeetechMotorsBus(
port=self.config.port_motor_bus,
self.bus = FeetechMotorsBus(
port=self.config.port,
motors={
"arm_shoulder_pan": config.shoulder_pan,
"arm_shoulder_lift": config.shoulder_lift,
"arm_elbow_flex": config.elbow_flex,
"arm_wrist_flex": config.wrist_flex,
"arm_wrist_roll": config.wrist_roll,
"arm_gripper": config.gripper,
"base_left_wheel": config.left_wheel,
"base_right_wheel": config.right_wheel,
"base_back_wheel": config.back_wheel,
# arm
"arm_shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
"arm_gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
# base
"base_left_wheel": Motor(7, "sts3215", MotorNormMode.RANGE_M100_100),
"base_back_wheel": Motor(8, "sts3215", MotorNormMode.RANGE_M100_100),
"base_right_wheel": Motor(9, "sts3215", MotorNormMode.RANGE_M100_100),
},
calibration=self.calibration,
)
self.arm_actuators = [m for m in self.actuators_bus.motor_names if m.startswith("arm")]
self.base_actuators = [m for m in self.actuators_bus.motor_names if m.startswith("base")]
self.max_relative_target = config.max_relative_target
# TODO(Steven): Consider removing cameras from configs
self.arm_motors = [m for m in self.bus.names if m.startswith("arm")]
self.base_motors = [m for m in self.bus.names if m.startswith("base")]
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.actuators_bus),),
"names": {"motors": list(self.actuators_bus.motors)},
"shape": (len(self.bus),),
"names": {"motors": list(self.bus.motors)},
}
@property
@ -109,111 +96,114 @@ class LeKiwiRobot(Robot):
}
return cam_ft
def setup_actuators(self):
# Set-up arm actuators (position mode)
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.actuators_bus.write("Torque_Enable", TorqueMode.DISABLED.value, self.arm_actuators)
self.calibrate() # TODO(Steven): This should be only for the arm, but apparently it doesn't harm the base
# Mode=0 for Position Control
self.actuators_bus.write("Mode", 0, self.arm_actuators)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.actuators_bus.write("P_Coefficient", 16, self.arm_actuators)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.actuators_bus.write("I_Coefficient", 0, self.arm_actuators)
self.actuators_bus.write("D_Coefficient", 32, self.arm_actuators)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.actuators_bus.write("Lock", 0, self.arm_actuators)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.actuators_bus.write("Maximum_Acceleration", 254, self.arm_actuators)
self.actuators_bus.write("Acceleration", 254, self.arm_actuators)
logging.info("Activating torque.")
self.actuators_bus.write("Torque_Enable", TorqueMode.ENABLED.value, self.arm_actuators)
# Check arm can be read
self.actuators_bus.read("Present_Position", self.arm_actuators)
# Set-up base actuators (velocity mode)
self.actuators_bus.write("Lock", 0, self.base_actuators)
self.actuators_bus.write("Mode", [1, 1, 1], self.base_actuators)
self.actuators_bus.write("Lock", 1, self.base_actuators)
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.bus.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"LeKiwi Robot is already connected. Do not run `robot.connect()` twice."
)
raise DeviceAlreadyConnectedError(f"{self} already connected")
logging.info("Connecting actuators.")
self.actuators_bus.connect()
self.setup_actuators()
self.bus.connect()
if not self.is_calibrated:
self.calibrate()
logging.info("Connecting cameras.")
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.bus.is_calibrated
def calibrate(self) -> None:
# Copied from S100 robot
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
actuators_calib_path = self.calibration_dir / f"{self.config.id}.json"
logger.info(f"\nRunning calibration of {self}")
self.bus.disable_torque(self.arm_motors)
for name in self.arm_motors:
self.bus.write("Operating_Mode", name, OperatingMode.POSITION.value)
if actuators_calib_path.exists():
with open(actuators_calib_path, encoding="utf-8") as f:
calibration = json.load(f)
else:
logging.info("Missing calibration file '%s'", actuators_calib_path)
calibration = run_full_arm_calibration(self.actuators_bus, self.robot_type, self.name, "follower")
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.bus.set_half_turn_homings(self.arm_motors)
logging.info("Calibration is done! Saving calibration file '%s'", actuators_calib_path)
actuators_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(actuators_calib_path, "w", encoding="utf-8") as f:
json.dump(calibration, f)
full_turn_motor = "arm_wrist_roll"
unknown_range_motors = [name for name in self.arm_motors if name != full_turn_motor]
logger.info(
f"Move all arm joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.bus.record_ranges_of_motion(unknown_range_motors)
for name in [*self.base_motors, full_turn_motor]:
range_mins[name] = 0
range_maxes[name] = 4095
self.actuators_bus.set_calibration(calibration)
apply_feetech_offsets_from_calibration(self.actuators_bus, calibration)
self.calibration = {}
for name, motor in self.bus.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
# TODO(Steven): Should this be dict[str, Any] ?
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
self.bus.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def configure(self):
# Set-up arm actuators (position mode)
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.bus.disable_torque(self.arm_motors)
for name in self.arm_motors:
self.bus.write("Mode", name, OperatingMode.POSITION.value)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.bus.write("P_Coefficient", name, 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.bus.write("I_Coefficient", name, 0)
self.bus.write("D_Coefficient", name, 32)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.bus.write("Maximum_Acceleration", name, 254)
self.bus.write("Acceleration", name, 254)
for name in self.base_motors:
self.bus.write("Mode", name, OperatingMode.VELOCITY.value)
self.bus.enable_torque()
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError("LeKiwiRobot is not connected. You need to run `robot.connect()`.")
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read actuators position for arm and vel for base
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = np.concatenate(
(
self.actuators_bus.read("Present_Position", self.arm_actuators),
self.actuators_bus.read("Present_Speed", self.base_actuators),
)
)
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
start = time.perf_counter()
arm_pos = self.bus.sync_read("Present_Position", self.arm_motors)
base_vel = self.bus.sync_read("Present_Speed", self.base_motors)
obs_dict[OBS_STATE] = {**arm_pos, **base_vel}
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
start = time.perf_counter()
frame = cam.async_read()
ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
if ret:
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = base64.b64encode(buffer).decode("utf-8")
else:
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = ""
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
# Copied from S100 robot
"""Command lekiwi to move to a target joint configuration.
@ -221,9 +211,6 @@ class LeKiwiRobot(Robot):
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
@ -231,48 +218,35 @@ class LeKiwiRobot(Robot):
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError("LeKiwiRobot is not connected. You need to run `robot.connect()`.")
raise DeviceNotConnectedError(f"{self} is not connected.")
arm_goal_pos = {k: v for k, v in action.items() if k in self.arm_motors}
base_goal_vel = {k: v for k, v in action.items() if k in self.base_motors}
# Input action is in motor space
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.actuators_bus.read("Present_Position", self.arm_actuators)
goal_pos[:6] = ensure_safe_goal_position(
goal_pos[:6], present_pos, self.config.max_relative_target
)
present_pos = self.bus.sync_read("Present_Position", self.arm_motors)
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in arm_goal_pos.items()}
arm_safe_goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
# Send goal position to the actuators
# TODO(Steven): This happens synchronously
self.actuators_bus.write("Goal_Position", goal_pos[:6].astype(np.int32), self.arm_actuators)
self.actuators_bus.write("Goal_Speed", goal_pos[6:].astype(np.int32), self.base_actuators)
self.bus.sync_write("Goal_Position", arm_safe_goal_pos)
self.bus.sync_write("Goal_Speed", base_goal_vel)
return goal_pos
return {**arm_safe_goal_pos, **base_goal_vel}
def stop_base(self):
# TODO(Steven): Assumes there's only 3 motors for base
logging.info("Stopping base")
# TODO(Steven): Check if these operations are thread safe!
self.actuators_bus.write("Goal_Speed", [0, 0, 0], self.base_actuators)
logging.info("Base motors stopped")
def print_logs(self):
# TODO(Steven): Refactor logger
pass
self.bus.sync_write("Goal_Speed", {name: 0 for name in self.base_motors}, num_retry=5)
logger.info("Base motors stopped")
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"LeKiwi is not connected. You need to run `robot.connect()` before disconnecting."
)
raise DeviceNotConnectedError(f"{self} is not connected.")
self.stop_base()
self.actuators_bus.disconnect()
self.bus.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
logger.info(f"{self} disconnected.")