Merge branch 'main' into main
|
@ -0,0 +1,161 @@
|
||||||
|
# Adapted from https://github.com/huggingface/diffusers/blob/main/.github/workflows/pr_style_bot.yml
|
||||||
|
name: PR Style Bot
|
||||||
|
|
||||||
|
on:
|
||||||
|
issue_comment:
|
||||||
|
types: [created]
|
||||||
|
|
||||||
|
permissions: {}
|
||||||
|
|
||||||
|
env:
|
||||||
|
PYTHON_VERSION: "3.10"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
check-permissions:
|
||||||
|
if: >
|
||||||
|
contains(github.event.comment.body, '@bot /style') &&
|
||||||
|
github.event.issue.pull_request != null
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
outputs:
|
||||||
|
is_authorized: ${{ steps.check_user_permission.outputs.has_permission }}
|
||||||
|
steps:
|
||||||
|
- name: Check user permission
|
||||||
|
id: check_user_permission
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
script: |
|
||||||
|
const comment_user = context.payload.comment.user.login;
|
||||||
|
const { data: permission } = await github.rest.repos.getCollaboratorPermissionLevel({
|
||||||
|
owner: context.repo.owner,
|
||||||
|
repo: context.repo.repo,
|
||||||
|
username: comment_user
|
||||||
|
});
|
||||||
|
|
||||||
|
const authorized =
|
||||||
|
permission.permission === 'admin' ||
|
||||||
|
permission.permission === 'write';
|
||||||
|
|
||||||
|
console.log(
|
||||||
|
`User ${comment_user} has permission level: ${permission.permission}, ` +
|
||||||
|
`authorized: ${authorized} (admins & maintainers allowed)`
|
||||||
|
);
|
||||||
|
|
||||||
|
core.setOutput('has_permission', authorized);
|
||||||
|
|
||||||
|
run-style-bot:
|
||||||
|
needs: check-permissions
|
||||||
|
if: needs.check-permissions.outputs.is_authorized == 'true'
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
pull-requests: write
|
||||||
|
steps:
|
||||||
|
- name: Extract PR details
|
||||||
|
id: pr_info
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
script: |
|
||||||
|
const prNumber = context.payload.issue.number;
|
||||||
|
const { data: pr } = await github.rest.pulls.get({
|
||||||
|
owner: context.repo.owner,
|
||||||
|
repo: context.repo.repo,
|
||||||
|
pull_number: prNumber
|
||||||
|
});
|
||||||
|
|
||||||
|
// We capture both the branch ref and the "full_name" of the head repo
|
||||||
|
// so that we can check out the correct repository & branch (including forks).
|
||||||
|
core.setOutput("prNumber", prNumber);
|
||||||
|
core.setOutput("headRef", pr.head.ref);
|
||||||
|
core.setOutput("headRepoFullName", pr.head.repo.full_name);
|
||||||
|
|
||||||
|
- name: Check out PR branch
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
env:
|
||||||
|
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||||
|
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||||
|
with:
|
||||||
|
persist-credentials: true
|
||||||
|
# Instead of checking out the base repo, use the contributor's repo name
|
||||||
|
repository: ${{ env.HEADREPOFULLNAME }}
|
||||||
|
ref: ${{ env.HEADREF }}
|
||||||
|
# You may need fetch-depth: 0 for being able to push
|
||||||
|
fetch-depth: 0
|
||||||
|
token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
|
- name: Debug
|
||||||
|
env:
|
||||||
|
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||||
|
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||||
|
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
|
||||||
|
run: |
|
||||||
|
echo "PR number: ${PRNUMBER}"
|
||||||
|
echo "Head Ref: ${HEADREF}"
|
||||||
|
echo "Head Repo Full Name: ${HEADREPOFULLNAME}"
|
||||||
|
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: ${{ env.PYTHON_VERSION }}
|
||||||
|
|
||||||
|
- name: Get Ruff Version from pre-commit-config.yaml
|
||||||
|
id: get-ruff-version
|
||||||
|
run: |
|
||||||
|
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
|
||||||
|
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
|
||||||
|
|
||||||
|
- name: Install Ruff
|
||||||
|
env:
|
||||||
|
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
|
||||||
|
run: python -m pip install "ruff==${RUFF_VERSION}"
|
||||||
|
|
||||||
|
- name: Ruff check
|
||||||
|
run: ruff check --fix
|
||||||
|
|
||||||
|
- name: Ruff format
|
||||||
|
run: ruff format
|
||||||
|
|
||||||
|
- name: Commit and push changes
|
||||||
|
id: commit_and_push
|
||||||
|
env:
|
||||||
|
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||||
|
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||||
|
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
run: |
|
||||||
|
echo "HEADREPOFULLNAME: ${HEADREPOFULLNAME}, HEADREF: ${HEADREF}"
|
||||||
|
# Configure git with the Actions bot user
|
||||||
|
git config user.name "github-actions[bot]"
|
||||||
|
git config user.email "github-actions[bot]@users.noreply.github.com"
|
||||||
|
git config --local lfs.https://github.com/.locksverify false
|
||||||
|
|
||||||
|
# Make sure your 'origin' remote is set to the contributor's fork
|
||||||
|
git remote set-url origin "https://x-access-token:${GITHUB_TOKEN}@github.com/${HEADREPOFULLNAME}.git"
|
||||||
|
|
||||||
|
# If there are changes after running style/quality, commit them
|
||||||
|
if [ -n "$(git status --porcelain)" ]; then
|
||||||
|
git add .
|
||||||
|
git commit -m "Apply style fixes"
|
||||||
|
# Push to the original contributor's forked branch
|
||||||
|
git push origin HEAD:${HEADREF}
|
||||||
|
echo "changes_pushed=true" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "No changes to commit."
|
||||||
|
echo "changes_pushed=false" >> $GITHUB_OUTPUT
|
||||||
|
fi
|
||||||
|
|
||||||
|
- name: Comment on PR with workflow run link
|
||||||
|
if: steps.commit_and_push.outputs.changes_pushed == 'true'
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
script: |
|
||||||
|
const prNumber = parseInt(process.env.prNumber, 10);
|
||||||
|
const runUrl = `${process.env.GITHUB_SERVER_URL}/${process.env.GITHUB_REPOSITORY}/actions/runs/${process.env.GITHUB_RUN_ID}`
|
||||||
|
|
||||||
|
await github.rest.issues.createComment({
|
||||||
|
owner: context.repo.owner,
|
||||||
|
repo: context.repo.repo,
|
||||||
|
issue_number: prNumber,
|
||||||
|
body: `Style fixes have been applied. [View the workflow run here](${runUrl}).`
|
||||||
|
});
|
||||||
|
env:
|
||||||
|
prNumber: ${{ steps.pr_info.outputs.prNumber }}
|
|
@ -32,20 +32,21 @@ jobs:
|
||||||
id: get-ruff-version
|
id: get-ruff-version
|
||||||
run: |
|
run: |
|
||||||
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
|
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
|
||||||
echo "RUFF_VERSION=${RUFF_VERSION}" >> $GITHUB_ENV
|
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
|
||||||
|
|
||||||
- name: Install Ruff
|
- name: Install Ruff
|
||||||
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
|
env:
|
||||||
|
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
|
||||||
|
run: python -m pip install "ruff==${RUFF_VERSION}"
|
||||||
|
|
||||||
- name: Ruff check
|
- name: Ruff check
|
||||||
run: ruff check
|
run: ruff check --output-format=github
|
||||||
|
|
||||||
- name: Ruff format
|
- name: Ruff format
|
||||||
run: ruff format --diff
|
run: ruff format --diff
|
||||||
|
|
||||||
|
typos:
|
||||||
poetry_check:
|
name: Typos
|
||||||
name: Poetry check
|
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout Repository
|
- name: Checkout Repository
|
||||||
|
@ -53,38 +54,5 @@ jobs:
|
||||||
with:
|
with:
|
||||||
persist-credentials: false
|
persist-credentials: false
|
||||||
|
|
||||||
- name: Install poetry
|
- name: typos-action
|
||||||
run: pipx install "poetry<2.0.0"
|
uses: crate-ci/typos@v1.29.10
|
||||||
|
|
||||||
- name: Poetry check
|
|
||||||
run: poetry check
|
|
||||||
|
|
||||||
|
|
||||||
poetry_relax:
|
|
||||||
name: Poetry relax
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- name: Checkout Repository
|
|
||||||
uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
persist-credentials: false
|
|
||||||
|
|
||||||
- name: Install poetry
|
|
||||||
run: pipx install "poetry<2.0.0"
|
|
||||||
|
|
||||||
- name: Install poetry-relax
|
|
||||||
run: poetry self add poetry-relax
|
|
||||||
|
|
||||||
- name: Poetry relax
|
|
||||||
id: poetry_relax
|
|
||||||
run: |
|
|
||||||
output=$(poetry relax --check 2>&1)
|
|
||||||
if echo "$output" | grep -q "Proposing updates"; then
|
|
||||||
echo "$output"
|
|
||||||
echo ""
|
|
||||||
echo "Some dependencies have caret '^' version requirement added by poetry by default."
|
|
||||||
echo "Please replace them with '>='. You can do this by hand or use poetry-relax to do this."
|
|
||||||
exit 1
|
|
||||||
else
|
|
||||||
echo "$output"
|
|
||||||
fi
|
|
||||||
|
|
|
@ -32,21 +32,18 @@ jobs:
|
||||||
files: docker/**
|
files: docker/**
|
||||||
json: "true"
|
json: "true"
|
||||||
|
|
||||||
- name: Run step if only the files listed above change
|
- name: Run step if only the files listed above change # zizmor: ignore[template-injection]
|
||||||
if: steps.changed-files.outputs.any_changed == 'true'
|
if: steps.changed-files.outputs.any_changed == 'true'
|
||||||
id: set-matrix
|
id: set-matrix
|
||||||
env:
|
|
||||||
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
|
|
||||||
run: |
|
run: |
|
||||||
echo "matrix=${ALL_CHANGED_FILES}" >> $GITHUB_OUTPUT
|
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
|
||||||
|
|
||||||
|
|
||||||
build_modified_dockerfiles:
|
build_modified_dockerfiles:
|
||||||
name: Build modified Docker images
|
name: Build modified Docker images
|
||||||
needs: get_changed_files
|
needs: get_changed_files
|
||||||
runs-on:
|
runs-on:
|
||||||
group: aws-general-8-plus
|
group: aws-general-8-plus
|
||||||
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
|
if: needs.get_changed_files.outputs.matrix != ''
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
|
|
|
@ -7,7 +7,8 @@ on:
|
||||||
- "tests/**"
|
- "tests/**"
|
||||||
- "examples/**"
|
- "examples/**"
|
||||||
- ".github/**"
|
- ".github/**"
|
||||||
- "poetry.lock"
|
- "pyproject.toml"
|
||||||
|
- ".pre-commit-config.yaml"
|
||||||
- "Makefile"
|
- "Makefile"
|
||||||
- ".cache/**"
|
- ".cache/**"
|
||||||
push:
|
push:
|
||||||
|
@ -18,12 +19,16 @@ on:
|
||||||
- "tests/**"
|
- "tests/**"
|
||||||
- "examples/**"
|
- "examples/**"
|
||||||
- ".github/**"
|
- ".github/**"
|
||||||
- "poetry.lock"
|
- "pyproject.toml"
|
||||||
|
- ".pre-commit-config.yaml"
|
||||||
- "Makefile"
|
- "Makefile"
|
||||||
- ".cache/**"
|
- ".cache/**"
|
||||||
|
|
||||||
permissions: {}
|
permissions: {}
|
||||||
|
|
||||||
|
env:
|
||||||
|
UV_VERSION: "0.6.0"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
pytest:
|
pytest:
|
||||||
name: Pytest
|
name: Pytest
|
||||||
|
@ -42,25 +47,19 @@ jobs:
|
||||||
sudo apt-get update && \
|
sudo apt-get update && \
|
||||||
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
|
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
|
||||||
|
|
||||||
- name: Install poetry
|
- name: Install uv and python
|
||||||
run: |
|
uses: astral-sh/setup-uv@v5
|
||||||
pipx install poetry && poetry config virtualenvs.in-project true
|
|
||||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
|
||||||
|
|
||||||
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
|
|
||||||
- name: Set up Python 3.10
|
|
||||||
uses: actions/setup-python@v5
|
|
||||||
with:
|
with:
|
||||||
|
enable-cache: true
|
||||||
|
version: ${{ env.UV_VERSION }}
|
||||||
python-version: "3.10"
|
python-version: "3.10"
|
||||||
cache: "poetry"
|
|
||||||
|
|
||||||
- name: Install poetry dependencies
|
- name: Install lerobot (all extras)
|
||||||
run: |
|
run: uv sync --all-extras
|
||||||
poetry install --all-extras
|
|
||||||
|
|
||||||
- name: Test with pytest
|
- name: Test with pytest
|
||||||
run: |
|
run: |
|
||||||
pytest tests -v --cov=./lerobot --durations=0 \
|
uv run pytest tests -v --cov=./lerobot --durations=0 \
|
||||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||||
|
@ -80,24 +79,19 @@ jobs:
|
||||||
- name: Install apt dependencies
|
- name: Install apt dependencies
|
||||||
run: sudo apt-get update && sudo apt-get install -y ffmpeg
|
run: sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||||
|
|
||||||
- name: Install poetry
|
- name: Install uv and python
|
||||||
run: |
|
uses: astral-sh/setup-uv@v5
|
||||||
pipx install poetry && poetry config virtualenvs.in-project true
|
|
||||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
|
||||||
|
|
||||||
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
|
|
||||||
- name: Set up Python 3.10
|
|
||||||
uses: actions/setup-python@v5
|
|
||||||
with:
|
with:
|
||||||
|
enable-cache: true
|
||||||
|
version: ${{ env.UV_VERSION }}
|
||||||
python-version: "3.10"
|
python-version: "3.10"
|
||||||
|
|
||||||
- name: Install poetry dependencies
|
- name: Install lerobot
|
||||||
run: |
|
run: uv sync --extra "test"
|
||||||
poetry install --extras "test"
|
|
||||||
|
|
||||||
- name: Test with pytest
|
- name: Test with pytest
|
||||||
run: |
|
run: |
|
||||||
pytest tests -v --cov=./lerobot --durations=0 \
|
uv run pytest tests -v --cov=./lerobot --durations=0 \
|
||||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||||
|
@ -120,20 +114,21 @@ jobs:
|
||||||
sudo apt-get update && \
|
sudo apt-get update && \
|
||||||
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
|
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
|
||||||
|
|
||||||
- name: Install poetry
|
- name: Install uv and python
|
||||||
run: |
|
uses: astral-sh/setup-uv@v5
|
||||||
pipx install poetry && poetry config virtualenvs.in-project true
|
|
||||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
|
||||||
|
|
||||||
- name: Set up Python 3.10
|
|
||||||
uses: actions/setup-python@v5
|
|
||||||
with:
|
with:
|
||||||
|
enable-cache: true
|
||||||
|
version: ${{ env.UV_VERSION }}
|
||||||
python-version: "3.10"
|
python-version: "3.10"
|
||||||
cache: "poetry"
|
|
||||||
|
|
||||||
- name: Install poetry dependencies
|
- name: Install lerobot (all extras)
|
||||||
run: |
|
run: |
|
||||||
poetry install --all-extras
|
uv venv
|
||||||
|
uv sync --all-extras
|
||||||
|
|
||||||
|
- name: venv
|
||||||
|
run: |
|
||||||
|
echo "PYTHON_PATH=${{ github.workspace }}/.venv/bin/python" >> $GITHUB_ENV
|
||||||
|
|
||||||
- name: Test end-to-end
|
- name: Test end-to-end
|
||||||
run: |
|
run: |
|
||||||
|
|
|
@ -49,6 +49,10 @@ share/python-wheels/
|
||||||
*.egg
|
*.egg
|
||||||
MANIFEST
|
MANIFEST
|
||||||
|
|
||||||
|
# uv/poetry lock files
|
||||||
|
poetry.lock
|
||||||
|
uv.lock
|
||||||
|
|
||||||
# PyInstaller
|
# PyInstaller
|
||||||
# Usually these files are written by a python script from a template
|
# Usually these files are written by a python script from a template
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
|
|
@ -2,6 +2,7 @@ exclude: ^(tests/data)
|
||||||
default_language_version:
|
default_language_version:
|
||||||
python: python3.10
|
python: python3.10
|
||||||
repos:
|
repos:
|
||||||
|
##### Style / Misc. #####
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v5.0.0
|
rev: v5.0.0
|
||||||
hooks:
|
hooks:
|
||||||
|
@ -13,29 +14,34 @@ repos:
|
||||||
- id: check-toml
|
- id: check-toml
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
|
- repo: https://github.com/crate-ci/typos
|
||||||
|
rev: v1.30.0
|
||||||
|
hooks:
|
||||||
|
- id: typos
|
||||||
|
args: [--force-exclude]
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v3.19.1
|
rev: v3.19.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
rev: v0.9.6
|
rev: v0.9.9
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
args: [--fix]
|
args: [--fix]
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
- repo: https://github.com/python-poetry/poetry
|
|
||||||
rev: 1.8.5
|
##### Security #####
|
||||||
hooks:
|
|
||||||
- id: poetry-check
|
|
||||||
- id: poetry-lock
|
|
||||||
args:
|
|
||||||
- "--check"
|
|
||||||
- "--no-update"
|
|
||||||
- repo: https://github.com/gitleaks/gitleaks
|
- repo: https://github.com/gitleaks/gitleaks
|
||||||
rev: v8.23.3
|
rev: v8.24.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: gitleaks
|
- id: gitleaks
|
||||||
- repo: https://github.com/woodruffw/zizmor-pre-commit
|
- repo: https://github.com/woodruffw/zizmor-pre-commit
|
||||||
rev: v1.3.1
|
rev: v1.4.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: zizmor
|
- id: zizmor
|
||||||
|
- repo: https://github.com/PyCQA/bandit
|
||||||
|
rev: 1.8.3
|
||||||
|
hooks:
|
||||||
|
- id: bandit
|
||||||
|
args: ["-c", "pyproject.toml"]
|
||||||
|
additional_dependencies: ["bandit[toml]"]
|
||||||
|
|
|
@ -129,38 +129,71 @@ Follow these steps to start contributing:
|
||||||
|
|
||||||
🚨 **Do not** work on the `main` branch.
|
🚨 **Do not** work on the `main` branch.
|
||||||
|
|
||||||
4. for development, we use `poetry` instead of just `pip` to easily track our dependencies.
|
4. for development, we advise to use a tool like `poetry` or `uv` instead of just `pip` to easily track our dependencies.
|
||||||
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
|
Follow the instructions to [install poetry](https://python-poetry.org/docs/#installation) (use a version >=2.1.0) or to [install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) if you don't have one of them already.
|
||||||
|
|
||||||
Set up a development environment with conda or miniconda:
|
Set up a development environment with conda or miniconda:
|
||||||
```bash
|
```bash
|
||||||
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
|
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
|
||||||
```
|
```
|
||||||
|
|
||||||
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
|
If you're using `uv`, it can manage python versions so you can instead do:
|
||||||
```bash
|
```bash
|
||||||
poetry install --sync --extras "dev test"
|
uv venv --python 3.10 && source .venv/bin/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
|
||||||
|
|
||||||
|
using `poetry`
|
||||||
|
```bash
|
||||||
|
poetry sync --extras "dev test"
|
||||||
|
```
|
||||||
|
|
||||||
|
using `uv`
|
||||||
|
```bash
|
||||||
|
uv sync --extra dev --extra test
|
||||||
```
|
```
|
||||||
|
|
||||||
You can also install the project with all its dependencies (including environments):
|
You can also install the project with all its dependencies (including environments):
|
||||||
|
|
||||||
|
using `poetry`
|
||||||
```bash
|
```bash
|
||||||
poetry install --sync --all-extras
|
poetry sync --all-extras
|
||||||
|
```
|
||||||
|
|
||||||
|
using `uv`
|
||||||
|
```bash
|
||||||
|
uv sync --all-extras
|
||||||
```
|
```
|
||||||
|
|
||||||
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
|
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
|
||||||
|
|
||||||
Whichever command you chose to install the project (e.g. `poetry install --sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
|
Whichever command you chose to install the project (e.g. `poetry sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
|
||||||
|
|
||||||
The equivalent of `pip install some-package`, would just be:
|
The equivalent of `pip install some-package`, would just be:
|
||||||
|
|
||||||
|
using `poetry`
|
||||||
```bash
|
```bash
|
||||||
poetry add some-package
|
poetry add some-package
|
||||||
```
|
```
|
||||||
|
|
||||||
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
|
using `uv`
|
||||||
```bash
|
```bash
|
||||||
poetry lock --no-update
|
uv add some-package
|
||||||
```
|
```
|
||||||
|
|
||||||
|
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
|
||||||
|
using `poetry`
|
||||||
|
```bash
|
||||||
|
poetry lock
|
||||||
|
```
|
||||||
|
|
||||||
|
using `uv`
|
||||||
|
```bash
|
||||||
|
uv lock
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
5. Develop the features on your branch.
|
5. Develop the features on your branch.
|
||||||
|
|
||||||
As you work on the features, you should make sure that the test suite
|
As you work on the features, you should make sure that the test suite
|
||||||
|
@ -195,7 +228,7 @@ Follow these steps to start contributing:
|
||||||
git commit
|
git commit
|
||||||
```
|
```
|
||||||
|
|
||||||
Note, if you already commited some changes that have a wrong formatting, you can use:
|
Note, if you already committed some changes that have a wrong formatting, you can use:
|
||||||
```bash
|
```bash
|
||||||
pre-commit run --all-files
|
pre-commit run --all-files
|
||||||
```
|
```
|
||||||
|
|
8
Makefile
|
@ -2,10 +2,10 @@
|
||||||
|
|
||||||
PYTHON_PATH := $(shell which python)
|
PYTHON_PATH := $(shell which python)
|
||||||
|
|
||||||
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
|
# If uv is installed and a virtual environment exists, use it
|
||||||
POETRY_CHECK := $(shell command -v poetry)
|
UV_CHECK := $(shell command -v uv)
|
||||||
ifneq ($(POETRY_CHECK),)
|
ifneq ($(UV_CHECK),)
|
||||||
PYTHON_PATH := $(shell poetry run which python)
|
PYTHON_PATH := $(shell .venv/bin/python)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
|
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
|
||||||
|
|
21
README.md
|
@ -23,15 +23,24 @@
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<h2 align="center">
|
<h2 align="center">
|
||||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
|
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||||
|
Build Your Own SO-100 Robot!</a></p>
|
||||||
</h2>
|
</h2>
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
|
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
|
||||||
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
|
|
||||||
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
|
<p><strong>Meet the SO-100 – Just $110 per arm!</strong></p>
|
||||||
<p>Then watch your homemade robot act autonomously 🤯</p>
|
<p>Train it in minutes with a few simple moves on your laptop.</p>
|
||||||
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
|
<p>Then sit back and watch your creation act autonomously! 🤯</p>
|
||||||
|
|
||||||
|
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||||
|
Get the full SO-100 tutorial here.</a></p>
|
||||||
|
|
||||||
|
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
|
||||||
|
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
|
||||||
|
|
||||||
|
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
|
@ -210,7 +219,7 @@ A `LeRobotDataset` is serialised using several widespread file formats for each
|
||||||
- videos are stored in mp4 format to save space
|
- videos are stored in mp4 format to save space
|
||||||
- metadata are stored in plain json/jsonl files
|
- metadata are stored in plain json/jsonl files
|
||||||
|
|
||||||
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
|
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
|
||||||
|
|
||||||
### Evaluate a pretrained policy
|
### Evaluate a pretrained policy
|
||||||
|
|
||||||
|
|
|
@ -114,7 +114,7 @@ We tried to measure the most impactful parameters for both encoding and decoding
|
||||||
|
|
||||||
Additional encoding parameters exist that are not included in this benchmark. In particular:
|
Additional encoding parameters exist that are not included in this benchmark. In particular:
|
||||||
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
||||||
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
|
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
|
||||||
|
|
||||||
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
|
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
|
||||||
|
|
||||||
|
|
|
@ -1,33 +1,29 @@
|
||||||
# Configure image
|
# Configure image
|
||||||
ARG PYTHON_VERSION=3.10
|
ARG PYTHON_VERSION=3.10
|
||||||
|
|
||||||
FROM python:${PYTHON_VERSION}-slim
|
FROM python:${PYTHON_VERSION}-slim
|
||||||
ARG PYTHON_VERSION
|
|
||||||
ARG DEBIAN_FRONTEND=noninteractive
|
|
||||||
|
|
||||||
# Install apt dependencies
|
# Configure environment variables
|
||||||
|
ARG PYTHON_VERSION
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV MUJOCO_GL="egl"
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Install dependencies and set up Python in a single layer
|
||||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
build-essential cmake git git-lfs \
|
build-essential cmake git \
|
||||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||||
speech-dispatcher libgeos-dev \
|
speech-dispatcher libgeos-dev \
|
||||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
|
||||||
|
&& python -m venv /opt/venv \
|
||||||
|
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||||
|
|
||||||
# Create virtual environment
|
# Clone repository and install LeRobot in a single layer
|
||||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
COPY . /lerobot
|
||||||
RUN python -m venv /opt/venv
|
|
||||||
ENV PATH="/opt/venv/bin:$PATH"
|
|
||||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
|
||||||
|
|
||||||
# Install LeRobot
|
|
||||||
RUN git lfs install
|
|
||||||
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
|
|
||||||
WORKDIR /lerobot
|
WORKDIR /lerobot
|
||||||
RUN pip install --upgrade --no-cache-dir pip
|
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
|
||||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
|
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
|
||||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
# Set EGL as the rendering backend for MuJoCo
|
|
||||||
ENV MUJOCO_GL="egl"
|
|
||||||
|
|
||||||
# Execute in bash shell rather than python
|
# Execute in bash shell rather than python
|
||||||
CMD ["/bin/bash"]
|
CMD ["/bin/bash"]
|
||||||
|
|
|
@ -58,7 +58,7 @@ RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
|
||||||
RUN ln -s /usr/bin/python3 /usr/bin/python
|
RUN ln -s /usr/bin/python3 /usr/bin/python
|
||||||
|
|
||||||
# Install poetry
|
# Install poetry
|
||||||
RUN curl -sSL https://install.python-poetry.org | python - --version 1.8.5
|
RUN curl -sSL https://install.python-poetry.org | python -
|
||||||
ENV PATH="/root/.local/bin:$PATH"
|
ENV PATH="/root/.local/bin:$PATH"
|
||||||
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
||||||
RUN poetry config virtualenvs.create false
|
RUN poetry config virtualenvs.create false
|
||||||
|
|
|
@ -1,31 +1,24 @@
|
||||||
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||||
|
|
||||||
# Configure image
|
# Configure environment variables
|
||||||
ARG PYTHON_VERSION=3.10
|
ARG PYTHON_VERSION=3.10
|
||||||
ARG DEBIAN_FRONTEND=noninteractive
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
ENV MUJOCO_GL="egl"
|
||||||
|
ENV PATH="/opt/venv/bin:$PATH"
|
||||||
|
|
||||||
|
# Install dependencies and set up Python in a single layer
|
||||||
# Install apt dependencies
|
|
||||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||||
build-essential cmake git git-lfs \
|
build-essential cmake git \
|
||||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||||
speech-dispatcher libgeos-dev \
|
speech-dispatcher libgeos-dev \
|
||||||
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
|
||||||
|
&& python -m venv /opt/venv \
|
||||||
|
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||||
|
|
||||||
|
# Clone repository and install LeRobot in a single layer
|
||||||
# Create virtual environment
|
COPY . /lerobot
|
||||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
|
||||||
RUN python -m venv /opt/venv
|
|
||||||
ENV PATH="/opt/venv/bin:$PATH"
|
|
||||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
|
||||||
|
|
||||||
# Install LeRobot
|
|
||||||
RUN git lfs install
|
|
||||||
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
|
|
||||||
WORKDIR /lerobot
|
WORKDIR /lerobot
|
||||||
RUN pip install --upgrade --no-cache-dir pip
|
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
|
||||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
|
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
|
||||||
|
|
||||||
# Set EGL as the rendering backend for MuJoCo
|
|
||||||
ENV MUJOCO_GL="egl"
|
|
||||||
|
|
|
@ -4,8 +4,8 @@
|
||||||
|
|
||||||
- [A. Source the parts](#a-source-the-parts)
|
- [A. Source the parts](#a-source-the-parts)
|
||||||
- [B. Install LeRobot](#b-install-lerobot)
|
- [B. Install LeRobot](#b-install-lerobot)
|
||||||
- [C. Configure the motors](#c-configure-the-motors)
|
- [C. Configure the Motors](#c-configure-the-motors)
|
||||||
- [D. Assemble the arms](#d-assemble-the-arms)
|
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
|
||||||
- [E. Calibrate](#e-calibrate)
|
- [E. Calibrate](#e-calibrate)
|
||||||
- [F. Teleoperate](#f-teleoperate)
|
- [F. Teleoperate](#f-teleoperate)
|
||||||
- [G. Record a dataset](#g-record-a-dataset)
|
- [G. Record a dataset](#g-record-a-dataset)
|
||||||
|
@ -70,6 +70,7 @@ conda install -y -c conda-forge "opencv>=4.10.0"
|
||||||
```
|
```
|
||||||
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
|
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
|
||||||
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||||
|
|
||||||
## C. Configure the motors
|
## C. Configure the motors
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
|
@ -221,19 +222,13 @@ Redo the process for all your motors until ID 6. Do the same for the 6 motors of
|
||||||
|
|
||||||
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||||
|
|
||||||
#### c. Add motor horn to all 12 motors
|
## D. Step-by-Step Assembly Instructions
|
||||||
|
|
||||||
<details>
|
**Step 1: Clean Parts**
|
||||||
<summary><strong>Video adding motor horn</strong></summary>
|
- Remove all support material from the 3D-printed parts.
|
||||||
|
---
|
||||||
|
|
||||||
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
|
### Additional Guidance
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
Follow the video for adding the motor horn. For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
|
|
||||||
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
|
|
||||||
|
|
||||||
## D. Assemble the arms
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary><strong>Video assembling arms</strong></summary>
|
<summary><strong>Video assembling arms</strong></summary>
|
||||||
|
@ -242,7 +237,211 @@ Try to avoid rotating the motor while doing so to keep position 2048 set during
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
Follow the video for assembling the arms. It is important to insert the cables into the motor that is being assembled before you assemble the motor into the arm! Inserting the cables beforehand is much easier than doing this afterward. The first arm should take a bit more than 1 hour to assemble, but once you get used to it, you can do it under 1 hour for the second arm.
|
**Note:**
|
||||||
|
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### First Motor
|
||||||
|
|
||||||
|
**Step 2: Insert Wires**
|
||||||
|
- Insert two wires into the first motor.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img1.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 3: Install in Base**
|
||||||
|
- Place the first motor into the base.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img2.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 4: Secure Motor**
|
||||||
|
- Fasten the motor with 4 screws. Two from the bottom and two from top.
|
||||||
|
|
||||||
|
**Step 5: Attach Motor Holder**
|
||||||
|
- Slide over the first motor holder and fasten it using two screws (one on each side).
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img4.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 6: Attach Motor Horns**
|
||||||
|
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img5.jpg" style="height:300px;">
|
||||||
|
<details>
|
||||||
|
<summary><strong>Video adding motor horn</strong></summary>
|
||||||
|
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
**Step 7: Attach Shoulder Part**
|
||||||
|
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
|
||||||
|
- Attach the shoulder part.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img6.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 8: Secure Shoulder**
|
||||||
|
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
|
||||||
|
*(access bottom holes by turning the shoulder).*
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Second Motor Assembly
|
||||||
|
|
||||||
|
**Step 9: Install Motor 2**
|
||||||
|
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img8.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 10: Attach Shoulder Holder**
|
||||||
|
- Add the shoulder motor holder.
|
||||||
|
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
|
||||||
|
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
|
||||||
|
|
||||||
|
<div style="display: flex;">
|
||||||
|
<img src="../media/tutorial/img9.jpg" style="height:250px;">
|
||||||
|
<img src="../media/tutorial/img10.jpg" style="height:250px;">
|
||||||
|
<img src="../media/tutorial/img12.jpg" style="height:250px;">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
**Step 11: Secure Motor 2**
|
||||||
|
- Fasten the second motor with 4 screws.
|
||||||
|
|
||||||
|
**Step 12: Attach Motor Horn**
|
||||||
|
- Attach both motor horns to motor 2, again use the horn screw.
|
||||||
|
|
||||||
|
**Step 13: Attach Base**
|
||||||
|
- Install the base attachment using 2 screws.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img11.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 14: Attach Upper Arm**
|
||||||
|
- Attach the upper arm with 4 screws on each side.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img13.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Third Motor Assembly
|
||||||
|
|
||||||
|
**Step 15: Install Motor 3**
|
||||||
|
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
|
||||||
|
|
||||||
|
**Step 16: Attach Motor Horn**
|
||||||
|
- Attach both motor horns to motor 3 and secure one again with a horn screw.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img14.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 17: Attach Forearm**
|
||||||
|
- Connect the forearm to motor 3 using 4 screws on each side.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img15.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Fourth Motor Assembly
|
||||||
|
|
||||||
|
**Step 18: Install Motor 4**
|
||||||
|
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
|
||||||
|
|
||||||
|
<div style="display: flex;">
|
||||||
|
<img src="../media/tutorial/img16.jpg" style="height:300px;">
|
||||||
|
<img src="../media/tutorial/img19.jpg" style="height:300px;">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
**Step 19: Attach Motor Holder 4**
|
||||||
|
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img17.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 20: Secure Motor 4 & Attach Horn**
|
||||||
|
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img18.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Wrist Assembly
|
||||||
|
|
||||||
|
**Step 21: Install Motor 5**
|
||||||
|
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img20.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 22: Attach Wrist**
|
||||||
|
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
|
||||||
|
- Secure the wrist to motor 4 using 4 screws on both sides.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img22.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 23: Attach Wrist Horn**
|
||||||
|
- Install only one motor horn on the wrist motor and secure it with a horn screw.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img23.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Follower Configuration
|
||||||
|
|
||||||
|
**Step 24: Attach Gripper**
|
||||||
|
- Attach the gripper to motor 5.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img24.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 25: Install Gripper Motor**
|
||||||
|
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img25.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 26: Attach Gripper Horn & Claw**
|
||||||
|
- Attach the motor horns and again use a horn screw.
|
||||||
|
- Install the gripper claw and secure it with 4 screws on both sides.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img26.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 27: Mount Controller**
|
||||||
|
- Attach the motor controller on the back.
|
||||||
|
|
||||||
|
<div style="display: flex;">
|
||||||
|
<img src="../media/tutorial/img27.jpg" style="height:300px;">
|
||||||
|
<img src="../media/tutorial/img28.jpg" style="height:300px;">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
*Assembly complete – proceed to Leader arm assembly.*
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Leader Configuration
|
||||||
|
|
||||||
|
For the leader configuration, perform **Steps 1–23**. Make sure that you removed the motor gears from the motors.
|
||||||
|
|
||||||
|
**Step 24: Attach Leader Holder**
|
||||||
|
- Mount the leader holder onto the wrist and secure it with a screw.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img29.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 25: Attach Handle**
|
||||||
|
- Attach the handle to motor 5 using 4 screws.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img30.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 26: Install Gripper Motor**
|
||||||
|
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img31.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 27: Attach Trigger**
|
||||||
|
- Attach the follower trigger with 4 screws.
|
||||||
|
|
||||||
|
<img src="../media/tutorial/img32.jpg" style="height:300px;">
|
||||||
|
|
||||||
|
**Step 28: Mount Controller**
|
||||||
|
- Attach the motor controller on the back.
|
||||||
|
|
||||||
|
<div style="display: flex;">
|
||||||
|
<img src="../media/tutorial/img27.jpg" style="height:300px;">
|
||||||
|
<img src="../media/tutorial/img28.jpg" style="height:300px;">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
*Assembly complete – proceed to calibration.*
|
||||||
|
|
||||||
|
|
||||||
## E. Calibrate
|
## E. Calibrate
|
||||||
|
|
||||||
|
@ -335,7 +534,7 @@ python lerobot/scripts/control_robot.py \
|
||||||
--control.push_to_hub=true
|
--control.push_to_hub=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: You can resume recording by adding `--control.resume=true`. Also if you didn't push your dataset yet, add `--control.local_files_only=true`.
|
Note: You can resume recording by adding `--control.resume=true`.
|
||||||
|
|
||||||
## H. Visualize a dataset
|
## H. Visualize a dataset
|
||||||
|
|
||||||
|
@ -344,7 +543,7 @@ If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you c
|
||||||
echo ${HF_USER}/so100_test
|
echo ${HF_USER}/so100_test
|
||||||
```
|
```
|
||||||
|
|
||||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
|
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||||
```bash
|
```bash
|
||||||
python lerobot/scripts/visualize_dataset_html.py \
|
python lerobot/scripts/visualize_dataset_html.py \
|
||||||
--repo-id ${HF_USER}/so100_test \
|
--repo-id ${HF_USER}/so100_test \
|
||||||
|
@ -363,8 +562,6 @@ python lerobot/scripts/control_robot.py \
|
||||||
--control.episode=0
|
--control.episode=0
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
|
|
||||||
|
|
||||||
## J. Train a policy
|
## J. Train a policy
|
||||||
|
|
||||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||||
|
@ -378,8 +575,6 @@ python lerobot/scripts/train.py \
|
||||||
--wandb.enable=true
|
--wandb.enable=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
|
|
||||||
|
|
||||||
Let's explain it:
|
Let's explain it:
|
||||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
||||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||||
|
@ -416,4 +611,4 @@ As you can see, it's almost the same command as previously used to record your t
|
||||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
> If you have any questions or need help, please reach out on Discord in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
|
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
|
||||||
|
|
|
@ -0,0 +1,585 @@
|
||||||
|
# Using the [LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi) Robot with LeRobot
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
|
||||||
|
- [A. Source the parts](#a-source-the-parts)
|
||||||
|
- [B. Install software Pi](#b-install-software-on-pi)
|
||||||
|
- [C. Setup LeRobot laptop/pc](#c-install-lerobot-on-laptop)
|
||||||
|
- [D. Assemble the arms](#d-assembly)
|
||||||
|
- [E. Calibrate](#e-calibration)
|
||||||
|
- [F. Teleoperate](#f-teleoperate)
|
||||||
|
- [G. Record a dataset](#g-record-a-dataset)
|
||||||
|
- [H. Visualize a dataset](#h-visualize-a-dataset)
|
||||||
|
- [I. Replay an episode](#i-replay-an-episode)
|
||||||
|
- [J. Train a policy](#j-train-a-policy)
|
||||||
|
- [K. Evaluate your policy](#k-evaluate-your-policy)
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#mobile-so-100-arm`](https://discord.com/channels/1216765309076115607/1318390825528332371).
|
||||||
|
|
||||||
|
## A. Source the parts
|
||||||
|
|
||||||
|
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts, and advice if it's your first time printing or if you don't own a 3D printer.
|
||||||
|
|
||||||
|
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||||
|
|
||||||
|
### Wired version
|
||||||
|
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
|
||||||
|
|
||||||
|
## B. Install software on Pi
|
||||||
|
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
|
||||||
|
|
||||||
|
### Install OS
|
||||||
|
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
|
||||||
|
|
||||||
|
### Setup SSH
|
||||||
|
After setting up your Pi, you should enable and setup [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can login into the Pi from your laptop without requiring a screen, keyboard and mouse in the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
|
||||||
|
|
||||||
|
### Install LeRobot
|
||||||
|
|
||||||
|
On your Raspberry Pi:
|
||||||
|
|
||||||
|
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||||
|
|
||||||
|
#### 2. Restart shell
|
||||||
|
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
|
||||||
|
|
||||||
|
#### 3. Create and activate a fresh conda environment for lerobot
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>Video install instructions</strong></summary>
|
||||||
|
|
||||||
|
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -y -n lerobot python=3.10
|
||||||
|
```
|
||||||
|
|
||||||
|
Then activate your conda environment (do this each time you open a shell to use lerobot!):
|
||||||
|
```bash
|
||||||
|
conda activate lerobot
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4. Clone LeRobot:
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Install LeRobot with dependencies for the feetech motors:
|
||||||
|
```bash
|
||||||
|
cd ~/lerobot && pip install -e ".[feetech]"
|
||||||
|
```
|
||||||
|
|
||||||
|
## C. Install LeRobot on laptop
|
||||||
|
If you already have install LeRobot on your laptop you can skip this step, otherwise please follow along as we do the same steps we did on the Pi.
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||||
|
|
||||||
|
On your computer:
|
||||||
|
|
||||||
|
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||||
|
|
||||||
|
#### 2. Restart shell
|
||||||
|
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
|
||||||
|
|
||||||
|
#### 3. Create and activate a fresh conda environment for lerobot
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>Video install instructions</strong></summary>
|
||||||
|
|
||||||
|
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -y -n lerobot python=3.10
|
||||||
|
```
|
||||||
|
|
||||||
|
Then activate your conda environment (do this each time you open a shell to use lerobot!):
|
||||||
|
```bash
|
||||||
|
conda activate lerobot
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4. Clone LeRobot:
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Install LeRobot with dependencies for the feetech motors:
|
||||||
|
```bash
|
||||||
|
cd ~/lerobot && pip install -e ".[feetech]"
|
||||||
|
```
|
||||||
|
|
||||||
|
*EXTRA: For Linux only (not Mac)*: install extra dependencies for recording datasets:
|
||||||
|
```bash
|
||||||
|
conda install -y -c conda-forge ffmpeg
|
||||||
|
pip uninstall -y opencv-python
|
||||||
|
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||||
|
```
|
||||||
|
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms and Mobile base :robot:.
|
||||||
|
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
|
||||||
|
|
||||||
|
# D. Assembly
|
||||||
|
|
||||||
|
First we will assemble the two SO100 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base.
|
||||||
|
|
||||||
|
## SO100 Arms
|
||||||
|
### Configure motors
|
||||||
|
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These needs to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
|
||||||
|
|
||||||
|
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
|
||||||
|
|
||||||
|
### Assemble arms
|
||||||
|
[Assemble arms instruction](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#d-assemble-the-arms)
|
||||||
|
|
||||||
|
## Mobile base (LeKiwi)
|
||||||
|
[Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi)
|
||||||
|
|
||||||
|
### Update config
|
||||||
|
Both config files on the LeKiwi LeRobot and on the laptop should be the same. First we should find the Ip address of the Raspberry Pi of the mobile manipulator. This is the same Ip address used in SSH. We also need the usb port of the control board of the leader arm on the laptop and the port of the control board on LeKiwi. We can find these ports with the following script.
|
||||||
|
|
||||||
|
#### a. Run the script to find port
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>Video finding port</strong></summary>
|
||||||
|
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
|
||||||
|
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
To find the port for each bus servo adapter, run the utility script:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/find_motors_bus_port.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### b. Example outputs
|
||||||
|
|
||||||
|
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||||
|
```
|
||||||
|
Finding all available ports for the MotorBus.
|
||||||
|
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||||
|
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||||
|
|
||||||
|
[...Disconnect leader arm and press Enter...]
|
||||||
|
|
||||||
|
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
|
||||||
|
Reconnect the usb cable.
|
||||||
|
```
|
||||||
|
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
|
||||||
|
```
|
||||||
|
Finding all available ports for the MotorBus.
|
||||||
|
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||||
|
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||||
|
|
||||||
|
[...Disconnect follower arm and press Enter...]
|
||||||
|
|
||||||
|
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
|
||||||
|
Reconnect the usb cable.
|
||||||
|
```
|
||||||
|
|
||||||
|
#### c. Troubleshooting
|
||||||
|
On Linux, you might need to give access to the USB ports by running:
|
||||||
|
```bash
|
||||||
|
sudo chmod 666 /dev/ttyACM0
|
||||||
|
sudo chmod 666 /dev/ttyACM1
|
||||||
|
```
|
||||||
|
|
||||||
|
#### d. Update config file
|
||||||
|
|
||||||
|
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
|
||||||
|
```python
|
||||||
|
@RobotConfig.register_subclass("lekiwi")
|
||||||
|
@dataclass
|
||||||
|
class LeKiwiRobotConfig(RobotConfig):
|
||||||
|
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||||
|
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||||
|
# the number of motors in your follower arms.
|
||||||
|
max_relative_target: int | None = None
|
||||||
|
|
||||||
|
# Network Configuration
|
||||||
|
ip: str = "172.17.133.91"
|
||||||
|
port: int = 5555
|
||||||
|
video_port: int = 5556
|
||||||
|
|
||||||
|
cameras: dict[str, CameraConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"mobile": OpenCVCameraConfig(camera_index="/dev/video0", fps=30, width=640, height=480),
|
||||||
|
"mobile2": OpenCVCameraConfig(camera_index="/dev/video2", fps=30, width=640, height=480),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||||
|
|
||||||
|
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/tty.usbmodem585A0077581",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/ttyACM0",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
"left_wheel": (7, "sts3215"),
|
||||||
|
"back_wheel": (8, "sts3215"),
|
||||||
|
"right_wheel": (9, "sts3215"),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
teleop_keys: dict[str, str] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
# Movement
|
||||||
|
"forward": "w",
|
||||||
|
"backward": "s",
|
||||||
|
"left": "a",
|
||||||
|
"right": "d",
|
||||||
|
"rotate_left": "z",
|
||||||
|
"rotate_right": "x",
|
||||||
|
# Speed control
|
||||||
|
"speed_up": "r",
|
||||||
|
"speed_down": "f",
|
||||||
|
# quit teleop
|
||||||
|
"quit": "q",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
mock: bool = False
|
||||||
|
```
|
||||||
|
|
||||||
|
## Wired version
|
||||||
|
|
||||||
|
For the wired LeKiwi version your configured IP address should refer to your own laptop (127.0.0.1), because leader arm and LeKiwi are in this case connected to own laptop. Below and example configuration for this wired setup:
|
||||||
|
```python
|
||||||
|
@RobotConfig.register_subclass("lekiwi")
|
||||||
|
@dataclass
|
||||||
|
class LeKiwiRobotConfig(RobotConfig):
|
||||||
|
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||||
|
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||||
|
# the number of motors in your follower arms.
|
||||||
|
max_relative_target: int | None = None
|
||||||
|
|
||||||
|
# Network Configuration
|
||||||
|
ip: str = "127.0.0.1"
|
||||||
|
port: int = 5555
|
||||||
|
video_port: int = 5556
|
||||||
|
|
||||||
|
cameras: dict[str, CameraConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"front": OpenCVCameraConfig(
|
||||||
|
camera_index=0, fps=30, width=640, height=480, rotation=90
|
||||||
|
),
|
||||||
|
"wrist": OpenCVCameraConfig(
|
||||||
|
camera_index=1, fps=30, width=640, height=480, rotation=180
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||||
|
|
||||||
|
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/tty.usbmodem585A0077581",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/tty.usbmodem58760431061",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
"left_wheel": (7, "sts3215"),
|
||||||
|
"back_wheel": (8, "sts3215"),
|
||||||
|
"right_wheel": (9, "sts3215"),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
teleop_keys: dict[str, str] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
# Movement
|
||||||
|
"forward": "w",
|
||||||
|
"backward": "s",
|
||||||
|
"left": "a",
|
||||||
|
"right": "d",
|
||||||
|
"rotate_left": "z",
|
||||||
|
"rotate_right": "x",
|
||||||
|
# Speed control
|
||||||
|
"speed_up": "r",
|
||||||
|
"speed_down": "f",
|
||||||
|
# quit teleop
|
||||||
|
"quit": "q",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
mock: bool = False
|
||||||
|
```
|
||||||
|
|
||||||
|
# E. Calibration
|
||||||
|
Now we have to calibrate the leader arm and the follower arm. The wheel motors don't have to be calibrated.
|
||||||
|
|
||||||
|
|
||||||
|
### Calibrate follower arm (on mobile base)
|
||||||
|
> [!IMPORTANT]
|
||||||
|
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||||
|
|
||||||
|
You will need to move the follower arm to these positions sequentially:
|
||||||
|
|
||||||
|
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||||
|
|---|---|---|
|
||||||
|
| <img src="../media/lekiwi/mobile_calib_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
|
||||||
|
|
||||||
|
Make sure the arm is connected to the Raspberry Pi and run this script (on the Raspberry Pi) to launch manual calibration:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--robot.cameras='{}' \
|
||||||
|
--control.type=calibrate \
|
||||||
|
--control.arms='["main_follower"]'
|
||||||
|
```
|
||||||
|
|
||||||
|
### Wired version
|
||||||
|
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
|
||||||
|
|
||||||
|
### Calibrate leader arm
|
||||||
|
Then to calibrate the leader arm (which is attached to the laptop/pc). You will need to move the leader arm to these positions sequentially:
|
||||||
|
|
||||||
|
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||||
|
|---|---|---|
|
||||||
|
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||||
|
|
||||||
|
Run this script (on your laptop/pc) to launch manual calibration:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--robot.cameras='{}' \
|
||||||
|
--control.type=calibrate \
|
||||||
|
--control.arms='["main_leader"]'
|
||||||
|
```
|
||||||
|
|
||||||
|
# F. Teleoperate
|
||||||
|
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=remote_robot
|
||||||
|
```
|
||||||
|
|
||||||
|
Then on your laptop, also run `conda activate lerobot` and this script:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=teleoperate \
|
||||||
|
--control.fps=30
|
||||||
|
```
|
||||||
|
|
||||||
|
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
|
||||||
|
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
|
||||||
|
|------------|-------------------|-----------------------|
|
||||||
|
| Fast | 0.4 | 90 |
|
||||||
|
| Medium | 0.25 | 60 |
|
||||||
|
| Slow | 0.1 | 30 |
|
||||||
|
|
||||||
|
|
||||||
|
| Key | Action |
|
||||||
|
|------|--------------------------------|
|
||||||
|
| W | Move forward |
|
||||||
|
| A | Move left |
|
||||||
|
| S | Move backward |
|
||||||
|
| D | Move right |
|
||||||
|
| Z | Turn left |
|
||||||
|
| X | Turn right |
|
||||||
|
| R | Increase speed |
|
||||||
|
| F | Decrease speed |
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||||
|
|
||||||
|
### Wired version
|
||||||
|
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
|
||||||
|
|
||||||
|
## Troubleshoot communication
|
||||||
|
|
||||||
|
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
|
||||||
|
|
||||||
|
### 1. Verify IP Address Configuration
|
||||||
|
Make sure that the correct ip for the Pi is set in the configuration file. To check the Raspberry Pi's IP address, run (on the Pi command line):
|
||||||
|
```bash
|
||||||
|
hostname -I
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Check if Pi is reachable from laptop/pc
|
||||||
|
Try pinging the Raspberry Pi from your laptop:
|
||||||
|
```bach
|
||||||
|
ping <your_pi_ip_address>
|
||||||
|
```
|
||||||
|
|
||||||
|
If the ping fails:
|
||||||
|
- Ensure the Pi is powered on and connected to the same network.
|
||||||
|
- Check if SSH is enabled on the Pi.
|
||||||
|
|
||||||
|
### 3. Try SSH connection
|
||||||
|
If you can't SSH into the Pi, it might not be properly connected. Use:
|
||||||
|
```bash
|
||||||
|
ssh <your_pi_user_name>@<your_pi_ip_address>
|
||||||
|
```
|
||||||
|
If you get a connection error:
|
||||||
|
- Ensure SSH is enabled on the Pi by running:
|
||||||
|
```bash
|
||||||
|
sudo raspi-config
|
||||||
|
```
|
||||||
|
Then navigate to: **Interfacing Options -> SSH** and enable it.
|
||||||
|
|
||||||
|
### 4. Same config file
|
||||||
|
Make sure the configuration file on both your laptop/pc and the Raspberry Pi is the same.
|
||||||
|
|
||||||
|
# G. Record a dataset
|
||||||
|
Once you're familiar with teleoperation, you can record your first dataset with LeKiwi.
|
||||||
|
|
||||||
|
To start the program on LeKiwi, SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=remote_robot
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||||
|
```bash
|
||||||
|
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||||
|
```
|
||||||
|
|
||||||
|
Store your Hugging Face repository name in a variable to run these commands:
|
||||||
|
```bash
|
||||||
|
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||||
|
echo $HF_USER
|
||||||
|
```
|
||||||
|
On your laptop then run this command to record 2 episodes and upload your dataset to the hub:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=record \
|
||||||
|
--control.fps=30 \
|
||||||
|
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||||
|
--control.repo_id=${HF_USER}/lekiwi_test \
|
||||||
|
--control.tags='["tutorial"]' \
|
||||||
|
--control.warmup_time_s=5 \
|
||||||
|
--control.episode_time_s=30 \
|
||||||
|
--control.reset_time_s=30 \
|
||||||
|
--control.num_episodes=2 \
|
||||||
|
--control.push_to_hub=true
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: You can resume recording by adding `--control.resume=true`.
|
||||||
|
|
||||||
|
### Wired version
|
||||||
|
If you have the **wired** LeKiwi version please run all commands including both these record dataset commands on your laptop.
|
||||||
|
|
||||||
|
# H. Visualize a dataset
|
||||||
|
|
||||||
|
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||||
|
```bash
|
||||||
|
echo ${HF_USER}/lekiwi_test
|
||||||
|
```
|
||||||
|
|
||||||
|
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/visualize_dataset_html.py \
|
||||||
|
--repo-id ${HF_USER}/lekiwi_test \
|
||||||
|
--local-files-only 1
|
||||||
|
```
|
||||||
|
|
||||||
|
# I. Replay an episode
|
||||||
|
Now try to replay the first episode on your robot:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=replay \
|
||||||
|
--control.fps=30 \
|
||||||
|
--control.repo_id=${HF_USER}/lekiwi_test \
|
||||||
|
--control.episode=0
|
||||||
|
```
|
||||||
|
|
||||||
|
## J. Train a policy
|
||||||
|
|
||||||
|
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/train.py \
|
||||||
|
--dataset.repo_id=${HF_USER}/lekiwi_test \
|
||||||
|
--policy.type=act \
|
||||||
|
--output_dir=outputs/train/act_lekiwi_test \
|
||||||
|
--job_name=act_lekiwi_test \
|
||||||
|
--device=cuda \
|
||||||
|
--wandb.enable=true
|
||||||
|
```
|
||||||
|
|
||||||
|
Let's explain it:
|
||||||
|
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
|
||||||
|
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||||
|
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
|
||||||
|
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||||
|
|
||||||
|
Training should take several hours. You will find checkpoints in `outputs/train/act_lekiwi_test/checkpoints`.
|
||||||
|
|
||||||
|
## K. Evaluate your policy
|
||||||
|
|
||||||
|
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=record \
|
||||||
|
--control.fps=30 \
|
||||||
|
--control.single_task="Drive to the red block and pick it up" \
|
||||||
|
--control.repo_id=${HF_USER}/eval_act_lekiwi_test \
|
||||||
|
--control.tags='["tutorial"]' \
|
||||||
|
--control.warmup_time_s=5 \
|
||||||
|
--control.episode_time_s=30 \
|
||||||
|
--control.reset_time_s=30 \
|
||||||
|
--control.num_episodes=10 \
|
||||||
|
--control.push_to_hub=true \
|
||||||
|
--control.policy.path=outputs/train/act_lekiwi_test/checkpoints/last/pretrained_model
|
||||||
|
```
|
||||||
|
|
||||||
|
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||||
|
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_lekiwi_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_lekiwi_test`).
|
||||||
|
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_lekiwi_test`).
|
|
@ -2,7 +2,7 @@ This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-ro
|
||||||
|
|
||||||
## Source the parts
|
## Source the parts
|
||||||
|
|
||||||
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials, with link to source the parts, as well as the instructions to 3D print the parts, and advices if it's your first time printing or if you don't own a 3D printer already.
|
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials with link to source the parts, as well as the instructions to 3D print the parts and advice if it's your first time printing or if you don't own a 3D printer already.
|
||||||
|
|
||||||
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||||
|
|
||||||
|
@ -256,7 +256,7 @@ python lerobot/scripts/control_robot.py \
|
||||||
--control.push_to_hub=true
|
--control.push_to_hub=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: You can resume recording by adding `--control.resume=true`. Also if you didn't push your dataset yet, add `--control.local_files_only=true`.
|
Note: You can resume recording by adding `--control.resume=true`.
|
||||||
|
|
||||||
## Visualize a dataset
|
## Visualize a dataset
|
||||||
|
|
||||||
|
@ -284,8 +284,6 @@ python lerobot/scripts/control_robot.py \
|
||||||
--control.episode=0
|
--control.episode=0
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
|
|
||||||
|
|
||||||
## Train a policy
|
## Train a policy
|
||||||
|
|
||||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||||
|
@ -299,8 +297,6 @@ python lerobot/scripts/train.py \
|
||||||
--wandb.enable=true
|
--wandb.enable=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If you didn't push your dataset yet, add `--control.local_files_only=true`.
|
|
||||||
|
|
||||||
Let's explain it:
|
Let's explain it:
|
||||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
|
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
|
||||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||||
|
|
|
@ -85,7 +85,7 @@ def main():
|
||||||
done = False
|
done = False
|
||||||
while not done:
|
while not done:
|
||||||
for batch in dataloader:
|
for batch in dataloader:
|
||||||
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
|
||||||
loss, _ = policy.forward(batch)
|
loss, _ = policy.forward(batch)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
|
@ -36,9 +36,14 @@ Using `pip`:
|
||||||
pip install -e ".[dynamixel]"
|
pip install -e ".[dynamixel]"
|
||||||
```
|
```
|
||||||
|
|
||||||
Or using `poetry`:
|
Using `poetry`:
|
||||||
```bash
|
```bash
|
||||||
poetry install --sync --extras "dynamixel"
|
poetry sync --extras "dynamixel"
|
||||||
|
```
|
||||||
|
|
||||||
|
Using `uv`:
|
||||||
|
```bash
|
||||||
|
uv sync --extra "dynamixel"
|
||||||
```
|
```
|
||||||
|
|
||||||
/!\ For Linux only, ffmpeg and opencv requires conda install for now. Run this exact sequence of commands:
|
/!\ For Linux only, ffmpeg and opencv requires conda install for now. Run this exact sequence of commands:
|
||||||
|
@ -393,7 +398,7 @@ And here are the corresponding positions for the leader arm:
|
||||||
|
|
||||||
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
|
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
|
||||||
|
|
||||||
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to mesure if the values changed negatively or positively.
|
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
|
||||||
|
|
||||||
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
|
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
|
||||||
|
|
||||||
|
@ -621,7 +626,7 @@ Finally, run this code to instantiate and connectyour camera:
|
||||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||||
|
|
||||||
camera_config = OpenCVCameraConfig(camera_index=0)
|
config = OpenCVCameraConfig(camera_index=0)
|
||||||
camera = OpenCVCamera(config)
|
camera = OpenCVCamera(config)
|
||||||
camera.connect()
|
camera.connect()
|
||||||
color_image = camera.read()
|
color_image = camera.read()
|
||||||
|
@ -658,11 +663,12 @@ camera.disconnect()
|
||||||
|
|
||||||
**Instantiate your robot with cameras**
|
**Instantiate your robot with cameras**
|
||||||
|
|
||||||
Additionaly, you can set up your robot to work with your cameras.
|
Additionally, you can set up your robot to work with your cameras.
|
||||||
|
|
||||||
Modify the following Python code with the appropriate camera names and configurations:
|
Modify the following Python code with the appropriate camera names and configurations:
|
||||||
```python
|
```python
|
||||||
robot = ManipulatorRobot(
|
robot = ManipulatorRobot(
|
||||||
|
KochRobotConfig(
|
||||||
leader_arms={"main": leader_arm},
|
leader_arms={"main": leader_arm},
|
||||||
follower_arms={"main": follower_arm},
|
follower_arms={"main": follower_arm},
|
||||||
calibration_dir=".cache/calibration/koch",
|
calibration_dir=".cache/calibration/koch",
|
||||||
|
@ -670,6 +676,7 @@ robot = ManipulatorRobot(
|
||||||
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
|
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
|
||||||
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
|
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
|
||||||
},
|
},
|
||||||
|
)
|
||||||
)
|
)
|
||||||
robot.connect()
|
robot.connect()
|
||||||
```
|
```
|
||||||
|
@ -706,7 +713,7 @@ python lerobot/scripts/control_robot.py \
|
||||||
|
|
||||||
You will see a lot of lines appearing like this one:
|
You will see a lot of lines appearing like this one:
|
||||||
```
|
```
|
||||||
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtRfoll: 0.19 (5239.0hz)
|
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtWfoll: 0.19 (5239.0hz)
|
||||||
```
|
```
|
||||||
|
|
||||||
It contains
|
It contains
|
||||||
|
@ -763,7 +770,7 @@ You can use the `record` function from [`lerobot/scripts/control_robot.py`](../l
|
||||||
1. Frames from cameras are saved on disk in threads, and encoded into videos at the end of each episode recording.
|
1. Frames from cameras are saved on disk in threads, and encoded into videos at the end of each episode recording.
|
||||||
2. Video streams from cameras are displayed in window so that you can verify them.
|
2. Video streams from cameras are displayed in window so that you can verify them.
|
||||||
3. Data is stored with [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py) format which is pushed to your Hugging Face page (unless `--control.push_to_hub=false` is provided).
|
3. Data is stored with [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py) format which is pushed to your Hugging Face page (unless `--control.push_to_hub=false` is provided).
|
||||||
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub. Also you will need to manually delete the dataset directory to start recording from scratch.
|
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
|
||||||
5. Set the flow of data recording using command line arguments:
|
5. Set the flow of data recording using command line arguments:
|
||||||
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
|
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
|
||||||
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
|
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
|
||||||
|
@ -818,8 +825,8 @@ It contains:
|
||||||
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
|
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
|
||||||
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
|
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
|
||||||
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
|
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
|
||||||
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchrously.
|
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
|
||||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchrously.
|
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||||
|
|
||||||
Troubleshooting:
|
Troubleshooting:
|
||||||
- On Linux, if you encounter a hanging issue when using cameras, uninstall opencv and re-install it with conda:
|
- On Linux, if you encounter a hanging issue when using cameras, uninstall opencv and re-install it with conda:
|
||||||
|
@ -839,7 +846,7 @@ At the end of data recording, your dataset will be uploaded on your Hugging Face
|
||||||
echo https://huggingface.co/datasets/${HF_USER}/koch_test
|
echo https://huggingface.co/datasets/${HF_USER}/koch_test
|
||||||
```
|
```
|
||||||
|
|
||||||
### b. Advices for recording dataset
|
### b. Advice for recording dataset
|
||||||
|
|
||||||
Once you're comfortable with data recording, it's time to create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.
|
Once you're comfortable with data recording, it's time to create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.
|
||||||
|
|
||||||
|
@ -878,8 +885,6 @@ python lerobot/scripts/control_robot.py \
|
||||||
--control.episode=0
|
--control.episode=0
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub.
|
|
||||||
|
|
||||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||||
|
|
||||||
## 4. Train a policy on your data
|
## 4. Train a policy on your data
|
||||||
|
@ -897,8 +902,6 @@ python lerobot/scripts/train.py \
|
||||||
--wandb.enable=true
|
--wandb.enable=true
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: You might need to add `--dataset.local_files_only=true` if your dataset was not uploaded to hugging face hub.
|
|
||||||
|
|
||||||
Let's explain it:
|
Let's explain it:
|
||||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
|
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
|
||||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||||
|
|
|
@ -98,7 +98,7 @@ python lerobot/scripts/control_robot.py \
|
||||||
```
|
```
|
||||||
This is equivalent to running `stretch_robot_home.py`
|
This is equivalent to running `stretch_robot_home.py`
|
||||||
|
|
||||||
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
|
> **Note:** If you run any of the LeRobot scripts below and Stretch is not properly homed, it will automatically home/calibrate first.
|
||||||
|
|
||||||
**Teleoperate**
|
**Teleoperate**
|
||||||
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
||||||
|
|
|
@ -2,7 +2,7 @@ This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.tro
|
||||||
|
|
||||||
## Setup
|
## Setup
|
||||||
|
|
||||||
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
|
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/2.0/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
|
||||||
|
|
||||||
|
|
||||||
## Install LeRobot
|
## Install LeRobot
|
||||||
|
@ -172,10 +172,10 @@ python lerobot/scripts/control_robot.py \
|
||||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_aloha_test`).
|
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_aloha_test`).
|
||||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_aloha_test`).
|
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_aloha_test`).
|
||||||
3. We use `--control.num_image_writer_processes=1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constent 30 fps during inference. Feel free to explore different values for `--control.num_image_writer_processes`.
|
3. We use `--control.num_image_writer_processes=1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constant 30 fps during inference. Feel free to explore different values for `--control.num_image_writer_processes`.
|
||||||
|
|
||||||
## More
|
## More
|
||||||
|
|
||||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
|
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explanation.
|
||||||
|
|
||||||
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.
|
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.
|
||||||
|
|
|
@ -2,9 +2,10 @@ import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
from huggingface_hub import HfApi
|
||||||
|
|
||||||
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
|
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||||
|
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
|
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
|
||||||
|
|
||||||
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
|
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
|
||||||
|
@ -89,9 +90,9 @@ def calculate_coverage(zarr_data):
|
||||||
|
|
||||||
num_frames = len(block_pos)
|
num_frames = len(block_pos)
|
||||||
|
|
||||||
coverage = np.zeros((num_frames,))
|
coverage = np.zeros((num_frames,), dtype=np.float32)
|
||||||
# 8 keypoints with 2 coords each
|
# 8 keypoints with 2 coords each
|
||||||
keypoints = np.zeros((num_frames, 16))
|
keypoints = np.zeros((num_frames, 16), dtype=np.float32)
|
||||||
|
|
||||||
# Set x, y, theta (in radians)
|
# Set x, y, theta (in radians)
|
||||||
goal_pos_angle = np.array([256, 256, np.pi / 4])
|
goal_pos_angle = np.array([256, 256, np.pi / 4])
|
||||||
|
@ -117,7 +118,7 @@ def calculate_coverage(zarr_data):
|
||||||
intersection_area = goal_geom.intersection(block_geom).area
|
intersection_area = goal_geom.intersection(block_geom).area
|
||||||
goal_area = goal_geom.area
|
goal_area = goal_geom.area
|
||||||
coverage[i] = intersection_area / goal_area
|
coverage[i] = intersection_area / goal_area
|
||||||
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
keypoints[i] = PushTEnv.get_keypoints(block_shapes).flatten()
|
||||||
|
|
||||||
return coverage, keypoints
|
return coverage, keypoints
|
||||||
|
|
||||||
|
@ -134,8 +135,8 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
|
||||||
if mode not in ["video", "image", "keypoints"]:
|
if mode not in ["video", "image", "keypoints"]:
|
||||||
raise ValueError(mode)
|
raise ValueError(mode)
|
||||||
|
|
||||||
if (LEROBOT_HOME / repo_id).exists():
|
if (HF_LEROBOT_HOME / repo_id).exists():
|
||||||
shutil.rmtree(LEROBOT_HOME / repo_id)
|
shutil.rmtree(HF_LEROBOT_HOME / repo_id)
|
||||||
|
|
||||||
if not raw_dir.exists():
|
if not raw_dir.exists():
|
||||||
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
|
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
|
||||||
|
@ -148,6 +149,10 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
|
||||||
action = zarr_data["action"][:]
|
action = zarr_data["action"][:]
|
||||||
image = zarr_data["img"] # (b, h, w, c)
|
image = zarr_data["img"] # (b, h, w, c)
|
||||||
|
|
||||||
|
if image.dtype == np.float32 and image.max() == np.float32(255):
|
||||||
|
# HACK: images are loaded as float32 but they actually encode uint8 data
|
||||||
|
image = image.astype(np.uint8)
|
||||||
|
|
||||||
episode_data_index = {
|
episode_data_index = {
|
||||||
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
|
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
|
||||||
"to": zarr_data.meta["episode_ends"],
|
"to": zarr_data.meta["episode_ends"],
|
||||||
|
@ -175,28 +180,30 @@ def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = T
|
||||||
|
|
||||||
for frame_idx in range(num_frames):
|
for frame_idx in range(num_frames):
|
||||||
i = from_idx + frame_idx
|
i = from_idx + frame_idx
|
||||||
|
idx = i + (frame_idx < num_frames - 1)
|
||||||
frame = {
|
frame = {
|
||||||
"action": torch.from_numpy(action[i]),
|
"action": action[i],
|
||||||
# Shift reward and success by +1 until the last item of the episode
|
# Shift reward and success by +1 until the last item of the episode
|
||||||
"next.reward": reward[i + (frame_idx < num_frames - 1)],
|
"next.reward": reward[idx : idx + 1],
|
||||||
"next.success": success[i + (frame_idx < num_frames - 1)],
|
"next.success": success[idx : idx + 1],
|
||||||
|
"task": PUSHT_TASK,
|
||||||
}
|
}
|
||||||
|
|
||||||
frame["observation.state"] = torch.from_numpy(agent_pos[i])
|
frame["observation.state"] = agent_pos[i]
|
||||||
|
|
||||||
if mode == "keypoints":
|
if mode == "keypoints":
|
||||||
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
|
frame["observation.environment_state"] = keypoints[i]
|
||||||
else:
|
else:
|
||||||
frame["observation.image"] = torch.from_numpy(image[i])
|
frame["observation.image"] = image[i]
|
||||||
|
|
||||||
dataset.add_frame(frame)
|
dataset.add_frame(frame)
|
||||||
|
|
||||||
dataset.save_episode(task=PUSHT_TASK)
|
dataset.save_episode()
|
||||||
|
|
||||||
dataset.consolidate()
|
|
||||||
|
|
||||||
if push_to_hub:
|
if push_to_hub:
|
||||||
dataset.push_to_hub()
|
dataset.push_to_hub()
|
||||||
|
hub_api = HfApi()
|
||||||
|
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -218,5 +225,5 @@ if __name__ == "__main__":
|
||||||
main(raw_dir, repo_id=repo_id, mode=mode)
|
main(raw_dir, repo_id=repo_id, mode=mode)
|
||||||
|
|
||||||
# Uncomment if you want to load the local dataset and explore it
|
# Uncomment if you want to load the local dataset and explore it
|
||||||
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
|
# dataset = LeRobotDataset(repo_id=repo_id)
|
||||||
# breakpoint()
|
# breakpoint()
|
||||||
|
|
|
@ -1,4 +1,9 @@
|
||||||
# keys
|
# keys
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from huggingface_hub.constants import HF_HOME
|
||||||
|
|
||||||
OBS_ENV = "observation.environment_state"
|
OBS_ENV = "observation.environment_state"
|
||||||
OBS_ROBOT = "observation.state"
|
OBS_ROBOT = "observation.state"
|
||||||
OBS_IMAGE = "observation.image"
|
OBS_IMAGE = "observation.image"
|
||||||
|
@ -15,3 +20,13 @@ TRAINING_STEP = "training_step.json"
|
||||||
OPTIMIZER_STATE = "optimizer_state.safetensors"
|
OPTIMIZER_STATE = "optimizer_state.safetensors"
|
||||||
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
|
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
|
||||||
SCHEDULER_STATE = "scheduler_state.json"
|
SCHEDULER_STATE = "scheduler_state.json"
|
||||||
|
|
||||||
|
# cache dir
|
||||||
|
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||||
|
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||||
|
|
||||||
|
if "LEROBOT_HOME" in os.environ:
|
||||||
|
raise ValueError(
|
||||||
|
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
|
||||||
|
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
|
||||||
|
)
|
||||||
|
|
|
@ -0,0 +1,54 @@
|
||||||
|
import packaging.version
|
||||||
|
|
||||||
|
V2_MESSAGE = """
|
||||||
|
The dataset you requested ({repo_id}) is in {version} format.
|
||||||
|
|
||||||
|
We introduced a new format since v2.0 which is not backward compatible with v1.x.
|
||||||
|
Please, use our conversion script. Modify the following command with your own task description:
|
||||||
|
```
|
||||||
|
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
|
||||||
|
--repo-id {repo_id} \\
|
||||||
|
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
|
||||||
|
```
|
||||||
|
|
||||||
|
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.", "Insert the
|
||||||
|
peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.", "Open the top
|
||||||
|
cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped
|
||||||
|
target.", "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the
|
||||||
|
sweatshirt.", ...
|
||||||
|
|
||||||
|
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||||
|
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||||
|
"""
|
||||||
|
|
||||||
|
V21_MESSAGE = """
|
||||||
|
The dataset you requested ({repo_id}) is in {version} format.
|
||||||
|
While current version of LeRobot is backward-compatible with it, the version of your dataset still uses global
|
||||||
|
stats instead of per-episode stats. Update your dataset stats to the new format using this command:
|
||||||
|
```
|
||||||
|
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py --repo-id={repo_id}
|
||||||
|
```
|
||||||
|
|
||||||
|
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||||
|
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||||
|
"""
|
||||||
|
|
||||||
|
FUTURE_MESSAGE = """
|
||||||
|
The dataset you requested ({repo_id}) is only available in {version} format.
|
||||||
|
As we cannot ensure forward compatibility with it, please update your current version of lerobot.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class CompatibilityError(Exception): ...
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardCompatibilityError(CompatibilityError):
|
||||||
|
def __init__(self, repo_id: str, version: packaging.version.Version):
|
||||||
|
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
|
||||||
|
super().__init__(message)
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardCompatibilityError(CompatibilityError):
|
||||||
|
def __init__(self, repo_id: str, version: packaging.version.Version):
|
||||||
|
message = FUTURE_MESSAGE.format(repo_id=repo_id, version=version)
|
||||||
|
super().__init__(message)
|
|
@ -13,202 +13,164 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from copy import deepcopy
|
import numpy as np
|
||||||
from math import ceil
|
|
||||||
|
|
||||||
import einops
|
from lerobot.common.datasets.utils import load_image_as_numpy
|
||||||
import torch
|
|
||||||
import tqdm
|
|
||||||
|
|
||||||
|
|
||||||
def get_stats_einops_patterns(dataset, num_workers=0):
|
def estimate_num_samples(
|
||||||
"""These einops patterns will be used to aggregate batches and compute statistics.
|
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
|
||||||
|
) -> int:
|
||||||
|
"""Heuristic to estimate the number of samples based on dataset size.
|
||||||
|
The power controls the sample growth relative to dataset size.
|
||||||
|
Lower the power for less number of samples.
|
||||||
|
|
||||||
Note: We assume the images are in channel first format
|
For default arguments, we have:
|
||||||
|
- from 1 to ~500, num_samples=100
|
||||||
|
- at 1000, num_samples=177
|
||||||
|
- at 2000, num_samples=299
|
||||||
|
- at 5000, num_samples=594
|
||||||
|
- at 10000, num_samples=1000
|
||||||
|
- at 20000, num_samples=1681
|
||||||
"""
|
"""
|
||||||
|
if dataset_len < min_num_samples:
|
||||||
dataloader = torch.utils.data.DataLoader(
|
min_num_samples = dataset_len
|
||||||
dataset,
|
return max(min_num_samples, min(int(dataset_len**power), max_num_samples))
|
||||||
num_workers=num_workers,
|
|
||||||
batch_size=2,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
batch = next(iter(dataloader))
|
|
||||||
|
|
||||||
stats_patterns = {}
|
|
||||||
|
|
||||||
for key in dataset.features:
|
|
||||||
# sanity check that tensors are not float64
|
|
||||||
assert batch[key].dtype != torch.float64
|
|
||||||
|
|
||||||
# if isinstance(feats_type, (VideoFrame, Image)):
|
|
||||||
if key in dataset.meta.camera_keys:
|
|
||||||
# sanity check that images are channel first
|
|
||||||
_, c, h, w = batch[key].shape
|
|
||||||
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
|
|
||||||
|
|
||||||
# sanity check that images are float32 in range [0,1]
|
|
||||||
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
|
|
||||||
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
|
||||||
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
|
||||||
|
|
||||||
stats_patterns[key] = "b c h w -> c 1 1"
|
|
||||||
elif batch[key].ndim == 2:
|
|
||||||
stats_patterns[key] = "b c -> c "
|
|
||||||
elif batch[key].ndim == 1:
|
|
||||||
stats_patterns[key] = "b -> 1"
|
|
||||||
else:
|
|
||||||
raise ValueError(f"{key}, {batch[key].shape}")
|
|
||||||
|
|
||||||
return stats_patterns
|
|
||||||
|
|
||||||
|
|
||||||
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
def sample_indices(data_len: int) -> list[int]:
|
||||||
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
|
num_samples = estimate_num_samples(data_len)
|
||||||
if max_num_samples is None:
|
return np.round(np.linspace(0, data_len - 1, num_samples)).astype(int).tolist()
|
||||||
max_num_samples = len(dataset)
|
|
||||||
|
|
||||||
# for more info on why we need to set the same number of workers, see `load_from_videos`
|
|
||||||
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
|
|
||||||
|
|
||||||
# mean and std will be computed incrementally while max and min will track the running value.
|
def auto_downsample_height_width(img: np.ndarray, target_size: int = 150, max_size_threshold: int = 300):
|
||||||
mean, std, max, min = {}, {}, {}, {}
|
_, height, width = img.shape
|
||||||
for key in stats_patterns:
|
|
||||||
mean[key] = torch.tensor(0.0).float()
|
|
||||||
std[key] = torch.tensor(0.0).float()
|
|
||||||
max[key] = torch.tensor(-float("inf")).float()
|
|
||||||
min[key] = torch.tensor(float("inf")).float()
|
|
||||||
|
|
||||||
def create_seeded_dataloader(dataset, batch_size, seed):
|
if max(width, height) < max_size_threshold:
|
||||||
generator = torch.Generator()
|
# no downsampling needed
|
||||||
generator.manual_seed(seed)
|
return img
|
||||||
dataloader = torch.utils.data.DataLoader(
|
|
||||||
dataset,
|
|
||||||
num_workers=num_workers,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
drop_last=False,
|
|
||||||
generator=generator,
|
|
||||||
)
|
|
||||||
return dataloader
|
|
||||||
|
|
||||||
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
downsample_factor = int(width / target_size) if width > height else int(height / target_size)
|
||||||
# surprises when rerunning the sampler.
|
return img[:, ::downsample_factor, ::downsample_factor]
|
||||||
first_batch = None
|
|
||||||
running_item_count = 0 # for online mean computation
|
|
||||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
|
||||||
for i, batch in enumerate(
|
|
||||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
|
||||||
):
|
|
||||||
this_batch_size = len(batch["index"])
|
|
||||||
running_item_count += this_batch_size
|
|
||||||
if first_batch is None:
|
|
||||||
first_batch = deepcopy(batch)
|
|
||||||
for key, pattern in stats_patterns.items():
|
|
||||||
batch[key] = batch[key].float()
|
|
||||||
# Numerically stable update step for mean computation.
|
|
||||||
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
|
||||||
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
|
|
||||||
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
|
|
||||||
# and x is the current batch mean. Some rearrangement is then required to avoid risking
|
|
||||||
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
|
|
||||||
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
|
|
||||||
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
|
|
||||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
|
||||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
|
||||||
|
|
||||||
if i == ceil(max_num_samples / batch_size) - 1:
|
|
||||||
break
|
|
||||||
|
|
||||||
first_batch_ = None
|
def sample_images(image_paths: list[str]) -> np.ndarray:
|
||||||
running_item_count = 0 # for online std computation
|
sampled_indices = sample_indices(len(image_paths))
|
||||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
|
||||||
for i, batch in enumerate(
|
|
||||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
|
||||||
):
|
|
||||||
this_batch_size = len(batch["index"])
|
|
||||||
running_item_count += this_batch_size
|
|
||||||
# Sanity check to make sure the batches are still in the same order as before.
|
|
||||||
if first_batch_ is None:
|
|
||||||
first_batch_ = deepcopy(batch)
|
|
||||||
for key in stats_patterns:
|
|
||||||
assert torch.equal(first_batch_[key], first_batch[key])
|
|
||||||
for key, pattern in stats_patterns.items():
|
|
||||||
batch[key] = batch[key].float()
|
|
||||||
# Numerically stable update step for mean computation (where the mean is over squared
|
|
||||||
# residuals).See notes in the mean computation loop above.
|
|
||||||
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
|
|
||||||
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
|
||||||
|
|
||||||
if i == ceil(max_num_samples / batch_size) - 1:
|
images = None
|
||||||
break
|
for i, idx in enumerate(sampled_indices):
|
||||||
|
path = image_paths[idx]
|
||||||
|
# we load as uint8 to reduce memory usage
|
||||||
|
img = load_image_as_numpy(path, dtype=np.uint8, channel_first=True)
|
||||||
|
img = auto_downsample_height_width(img)
|
||||||
|
|
||||||
for key in stats_patterns:
|
if images is None:
|
||||||
std[key] = torch.sqrt(std[key])
|
images = np.empty((len(sampled_indices), *img.shape), dtype=np.uint8)
|
||||||
|
|
||||||
stats = {}
|
images[i] = img
|
||||||
for key in stats_patterns:
|
|
||||||
stats[key] = {
|
return images
|
||||||
"mean": mean[key],
|
|
||||||
"std": std[key],
|
|
||||||
"max": max[key],
|
def get_feature_stats(array: np.ndarray, axis: tuple, keepdims: bool) -> dict[str, np.ndarray]:
|
||||||
"min": min[key],
|
return {
|
||||||
|
"min": np.min(array, axis=axis, keepdims=keepdims),
|
||||||
|
"max": np.max(array, axis=axis, keepdims=keepdims),
|
||||||
|
"mean": np.mean(array, axis=axis, keepdims=keepdims),
|
||||||
|
"std": np.std(array, axis=axis, keepdims=keepdims),
|
||||||
|
"count": np.array([len(array)]),
|
||||||
}
|
}
|
||||||
return stats
|
|
||||||
|
|
||||||
|
|
||||||
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
|
def compute_episode_stats(episode_data: dict[str, list[str] | np.ndarray], features: dict) -> dict:
|
||||||
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
|
ep_stats = {}
|
||||||
|
for key, data in episode_data.items():
|
||||||
|
if features[key]["dtype"] == "string":
|
||||||
|
continue # HACK: we should receive np.arrays of strings
|
||||||
|
elif features[key]["dtype"] in ["image", "video"]:
|
||||||
|
ep_ft_array = sample_images(data) # data is a list of image paths
|
||||||
|
axes_to_reduce = (0, 2, 3) # keep channel dim
|
||||||
|
keepdims = True
|
||||||
|
else:
|
||||||
|
ep_ft_array = data # data is already a np.ndarray
|
||||||
|
axes_to_reduce = 0 # compute stats over the first axis
|
||||||
|
keepdims = data.ndim == 1 # keep as np.array
|
||||||
|
|
||||||
The final stats will have the union of all data keys from each of the datasets.
|
ep_stats[key] = get_feature_stats(ep_ft_array, axis=axes_to_reduce, keepdims=keepdims)
|
||||||
|
|
||||||
The final stats will have the union of all data keys from each of the datasets. For instance:
|
# finally, we normalize and remove batch dim for images
|
||||||
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
if features[key]["dtype"] in ["image", "video"]:
|
||||||
|
ep_stats[key] = {
|
||||||
|
k: v if k == "count" else np.squeeze(v / 255.0, axis=0) for k, v in ep_stats[key].items()
|
||||||
|
}
|
||||||
|
|
||||||
|
return ep_stats
|
||||||
|
|
||||||
|
|
||||||
|
def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
|
||||||
|
for i in range(len(stats_list)):
|
||||||
|
for fkey in stats_list[i]:
|
||||||
|
for k, v in stats_list[i][fkey].items():
|
||||||
|
if not isinstance(v, np.ndarray):
|
||||||
|
raise ValueError(
|
||||||
|
f"Stats must be composed of numpy array, but key '{k}' of feature '{fkey}' is of type '{type(v)}' instead."
|
||||||
|
)
|
||||||
|
if v.ndim == 0:
|
||||||
|
raise ValueError("Number of dimensions must be at least 1, and is 0 instead.")
|
||||||
|
if k == "count" and v.shape != (1,):
|
||||||
|
raise ValueError(f"Shape of 'count' must be (1), but is {v.shape} instead.")
|
||||||
|
if "image" in fkey and k != "count" and v.shape != (3, 1, 1):
|
||||||
|
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
|
||||||
|
|
||||||
|
|
||||||
|
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
|
||||||
|
"""Aggregates stats for a single feature."""
|
||||||
|
means = np.stack([s["mean"] for s in stats_ft_list])
|
||||||
|
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
|
||||||
|
counts = np.stack([s["count"] for s in stats_ft_list])
|
||||||
|
total_count = counts.sum(axis=0)
|
||||||
|
|
||||||
|
# Prepare weighted mean by matching number of dimensions
|
||||||
|
while counts.ndim < means.ndim:
|
||||||
|
counts = np.expand_dims(counts, axis=-1)
|
||||||
|
|
||||||
|
# Compute the weighted mean
|
||||||
|
weighted_means = means * counts
|
||||||
|
total_mean = weighted_means.sum(axis=0) / total_count
|
||||||
|
|
||||||
|
# Compute the variance using the parallel algorithm
|
||||||
|
delta_means = means - total_mean
|
||||||
|
weighted_variances = (variances + delta_means**2) * counts
|
||||||
|
total_variance = weighted_variances.sum(axis=0) / total_count
|
||||||
|
|
||||||
|
return {
|
||||||
|
"min": np.min(np.stack([s["min"] for s in stats_ft_list]), axis=0),
|
||||||
|
"max": np.max(np.stack([s["max"] for s in stats_ft_list]), axis=0),
|
||||||
|
"mean": total_mean,
|
||||||
|
"std": np.sqrt(total_variance),
|
||||||
|
"count": total_count,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
|
||||||
|
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
|
||||||
|
|
||||||
|
The final stats will have the union of all data keys from each of the stats dicts.
|
||||||
|
|
||||||
|
For instance:
|
||||||
- new_min = min(min_dataset_0, min_dataset_1, ...)
|
- new_min = min(min_dataset_0, min_dataset_1, ...)
|
||||||
- new_mean = (mean of all data)
|
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
||||||
|
- new_mean = (mean of all data, weighted by counts)
|
||||||
- new_std = (std of all data)
|
- new_std = (std of all data)
|
||||||
"""
|
"""
|
||||||
data_keys = set()
|
|
||||||
for dataset in ls_datasets:
|
_assert_type_and_shape(stats_list)
|
||||||
data_keys.update(dataset.meta.stats.keys())
|
|
||||||
stats = {k: {} for k in data_keys}
|
data_keys = {key for stats in stats_list for key in stats}
|
||||||
for data_key in data_keys:
|
aggregated_stats = {key: {} for key in data_keys}
|
||||||
for stat_key in ["min", "max"]:
|
|
||||||
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
|
for key in data_keys:
|
||||||
stats[data_key][stat_key] = einops.reduce(
|
stats_with_key = [stats[key] for stats in stats_list if key in stats]
|
||||||
torch.stack(
|
aggregated_stats[key] = aggregate_feature_stats(stats_with_key)
|
||||||
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
|
|
||||||
dim=0,
|
return aggregated_stats
|
||||||
),
|
|
||||||
"n ... -> ...",
|
|
||||||
stat_key,
|
|
||||||
)
|
|
||||||
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
|
|
||||||
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
|
|
||||||
# dataset, then divide by total_samples to get the overall "mean".
|
|
||||||
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
|
|
||||||
# numerical overflow!
|
|
||||||
stats[data_key]["mean"] = sum(
|
|
||||||
d.meta.stats[data_key]["mean"] * (d.num_frames / total_samples)
|
|
||||||
for d in ls_datasets
|
|
||||||
if data_key in d.meta.stats
|
|
||||||
)
|
|
||||||
# The derivation for standard deviation is a little more involved but is much in the same spirit as
|
|
||||||
# the computation of the mean.
|
|
||||||
# Given two sets of data where the statistics are known:
|
|
||||||
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
|
|
||||||
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
|
|
||||||
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
|
|
||||||
# numerical overflow!
|
|
||||||
stats[data_key]["std"] = torch.sqrt(
|
|
||||||
sum(
|
|
||||||
(
|
|
||||||
d.meta.stats[data_key]["std"] ** 2
|
|
||||||
+ (d.meta.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2
|
|
||||||
)
|
|
||||||
* (d.num_frames / total_samples)
|
|
||||||
for d in ls_datasets
|
|
||||||
if data_key in d.meta.stats
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return stats
|
|
||||||
|
|
|
@ -83,15 +83,18 @@ def make_dataset(cfg: TrainPipelineConfig) -> LeRobotDataset | MultiLeRobotDatas
|
||||||
)
|
)
|
||||||
|
|
||||||
if isinstance(cfg.dataset.repo_id, str):
|
if isinstance(cfg.dataset.repo_id, str):
|
||||||
ds_meta = LeRobotDatasetMetadata(cfg.dataset.repo_id, local_files_only=cfg.dataset.local_files_only)
|
ds_meta = LeRobotDatasetMetadata(
|
||||||
|
cfg.dataset.repo_id, root=cfg.dataset.root, revision=cfg.dataset.revision
|
||||||
|
)
|
||||||
delta_timestamps = resolve_delta_timestamps(cfg.policy, ds_meta)
|
delta_timestamps = resolve_delta_timestamps(cfg.policy, ds_meta)
|
||||||
dataset = LeRobotDataset(
|
dataset = LeRobotDataset(
|
||||||
cfg.dataset.repo_id,
|
cfg.dataset.repo_id,
|
||||||
|
root=cfg.dataset.root,
|
||||||
episodes=cfg.dataset.episodes,
|
episodes=cfg.dataset.episodes,
|
||||||
delta_timestamps=delta_timestamps,
|
delta_timestamps=delta_timestamps,
|
||||||
image_transforms=image_transforms,
|
image_transforms=image_transforms,
|
||||||
|
revision=cfg.dataset.revision,
|
||||||
video_backend=cfg.dataset.video_backend,
|
video_backend=cfg.dataset.video_backend,
|
||||||
local_files_only=cfg.dataset.local_files_only,
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError("The MultiLeRobotDataset isn't supported for now.")
|
raise NotImplementedError("The MultiLeRobotDataset isn't supported for now.")
|
||||||
|
|
|
@ -38,22 +38,40 @@ def safe_stop_image_writer(func):
|
||||||
return wrapper
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
def image_array_to_image(image_array: np.ndarray) -> PIL.Image.Image:
|
def image_array_to_pil_image(image_array: np.ndarray, range_check: bool = True) -> PIL.Image.Image:
|
||||||
# TODO(aliberts): handle 1 channel and 4 for depth images
|
# TODO(aliberts): handle 1 channel and 4 for depth images
|
||||||
if image_array.ndim == 3 and image_array.shape[0] in [1, 3]:
|
if image_array.ndim != 3:
|
||||||
|
raise ValueError(f"The array has {image_array.ndim} dimensions, but 3 is expected for an image.")
|
||||||
|
|
||||||
|
if image_array.shape[0] == 3:
|
||||||
# Transpose from pytorch convention (C, H, W) to (H, W, C)
|
# Transpose from pytorch convention (C, H, W) to (H, W, C)
|
||||||
image_array = image_array.transpose(1, 2, 0)
|
image_array = image_array.transpose(1, 2, 0)
|
||||||
|
|
||||||
|
elif image_array.shape[-1] != 3:
|
||||||
|
raise NotImplementedError(
|
||||||
|
f"The image has {image_array.shape[-1]} channels, but 3 is required for now."
|
||||||
|
)
|
||||||
|
|
||||||
if image_array.dtype != np.uint8:
|
if image_array.dtype != np.uint8:
|
||||||
# Assume the image is in [0, 1] range for floating-point data
|
if range_check:
|
||||||
image_array = np.clip(image_array, 0, 1)
|
max_ = image_array.max().item()
|
||||||
|
min_ = image_array.min().item()
|
||||||
|
if max_ > 1.0 or min_ < 0.0:
|
||||||
|
raise ValueError(
|
||||||
|
"The image data type is float, which requires values in the range [0.0, 1.0]. "
|
||||||
|
f"However, the provided range is [{min_}, {max_}]. Please adjust the range or "
|
||||||
|
"provide a uint8 image with values in the range [0, 255]."
|
||||||
|
)
|
||||||
|
|
||||||
image_array = (image_array * 255).astype(np.uint8)
|
image_array = (image_array * 255).astype(np.uint8)
|
||||||
|
|
||||||
return PIL.Image.fromarray(image_array)
|
return PIL.Image.fromarray(image_array)
|
||||||
|
|
||||||
|
|
||||||
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
|
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
|
||||||
try:
|
try:
|
||||||
if isinstance(image, np.ndarray):
|
if isinstance(image, np.ndarray):
|
||||||
img = image_array_to_image(image)
|
img = image_array_to_pil_image(image)
|
||||||
elif isinstance(image, PIL.Image.Image):
|
elif isinstance(image, PIL.Image.Image):
|
||||||
img = image
|
img = image
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -13,50 +13,57 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import contextlib
|
||||||
import logging
|
import logging
|
||||||
import os
|
|
||||||
import shutil
|
import shutil
|
||||||
from functools import cached_property
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Callable
|
from typing import Callable
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import packaging.version
|
||||||
import PIL.Image
|
import PIL.Image
|
||||||
import torch
|
import torch
|
||||||
import torch.utils
|
import torch.utils
|
||||||
from datasets import load_dataset
|
from datasets import concatenate_datasets, load_dataset
|
||||||
from huggingface_hub import create_repo, snapshot_download, upload_folder
|
from huggingface_hub import HfApi, snapshot_download
|
||||||
|
from huggingface_hub.constants import REPOCARD_NAME
|
||||||
|
from huggingface_hub.errors import RevisionNotFoundError
|
||||||
|
|
||||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_stats
|
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||||
|
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
|
||||||
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
|
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
|
||||||
from lerobot.common.datasets.utils import (
|
from lerobot.common.datasets.utils import (
|
||||||
DEFAULT_FEATURES,
|
DEFAULT_FEATURES,
|
||||||
DEFAULT_IMAGE_PATH,
|
DEFAULT_IMAGE_PATH,
|
||||||
EPISODES_PATH,
|
|
||||||
INFO_PATH,
|
INFO_PATH,
|
||||||
STATS_PATH,
|
|
||||||
TASKS_PATH,
|
TASKS_PATH,
|
||||||
append_jsonlines,
|
append_jsonlines,
|
||||||
|
backward_compatible_episodes_stats,
|
||||||
check_delta_timestamps,
|
check_delta_timestamps,
|
||||||
check_timestamps_sync,
|
check_timestamps_sync,
|
||||||
check_version_compatibility,
|
check_version_compatibility,
|
||||||
create_branch,
|
|
||||||
create_empty_dataset_info,
|
create_empty_dataset_info,
|
||||||
create_lerobot_dataset_card,
|
create_lerobot_dataset_card,
|
||||||
|
embed_images,
|
||||||
get_delta_indices,
|
get_delta_indices,
|
||||||
get_episode_data_index,
|
get_episode_data_index,
|
||||||
get_features_from_robot,
|
get_features_from_robot,
|
||||||
get_hf_features_from_features,
|
get_hf_features_from_features,
|
||||||
get_hub_safe_version,
|
get_safe_version,
|
||||||
hf_transform_to_torch,
|
hf_transform_to_torch,
|
||||||
|
is_valid_version,
|
||||||
load_episodes,
|
load_episodes,
|
||||||
|
load_episodes_stats,
|
||||||
load_info,
|
load_info,
|
||||||
load_stats,
|
load_stats,
|
||||||
load_tasks,
|
load_tasks,
|
||||||
serialize_dict,
|
validate_episode_buffer,
|
||||||
|
validate_frame,
|
||||||
|
write_episode,
|
||||||
|
write_episode_stats,
|
||||||
|
write_info,
|
||||||
write_json,
|
write_json,
|
||||||
write_parquet,
|
|
||||||
)
|
)
|
||||||
from lerobot.common.datasets.video_utils import (
|
from lerobot.common.datasets.video_utils import (
|
||||||
VideoFrame,
|
VideoFrame,
|
||||||
|
@ -66,9 +73,7 @@ from lerobot.common.datasets.video_utils import (
|
||||||
)
|
)
|
||||||
from lerobot.common.robot_devices.robots.utils import Robot
|
from lerobot.common.robot_devices.robots.utils import Robot
|
||||||
|
|
||||||
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
|
CODEBASE_VERSION = "v2.1"
|
||||||
CODEBASE_VERSION = "v2.0"
|
|
||||||
LEROBOT_HOME = Path(os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")).expanduser()
|
|
||||||
|
|
||||||
|
|
||||||
class LeRobotDatasetMetadata:
|
class LeRobotDatasetMetadata:
|
||||||
|
@ -76,19 +81,36 @@ class LeRobotDatasetMetadata:
|
||||||
self,
|
self,
|
||||||
repo_id: str,
|
repo_id: str,
|
||||||
root: str | Path | None = None,
|
root: str | Path | None = None,
|
||||||
local_files_only: bool = False,
|
revision: str | None = None,
|
||||||
|
force_cache_sync: bool = False,
|
||||||
):
|
):
|
||||||
self.repo_id = repo_id
|
self.repo_id = repo_id
|
||||||
self.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
|
self.revision = revision if revision else CODEBASE_VERSION
|
||||||
self.local_files_only = local_files_only
|
self.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
|
||||||
|
|
||||||
|
try:
|
||||||
|
if force_cache_sync:
|
||||||
|
raise FileNotFoundError
|
||||||
|
self.load_metadata()
|
||||||
|
except (FileNotFoundError, NotADirectoryError):
|
||||||
|
if is_valid_version(self.revision):
|
||||||
|
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||||
|
|
||||||
# Load metadata
|
|
||||||
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
||||||
self.pull_from_repo(allow_patterns="meta/")
|
self.pull_from_repo(allow_patterns="meta/")
|
||||||
|
self.load_metadata()
|
||||||
|
|
||||||
|
def load_metadata(self):
|
||||||
self.info = load_info(self.root)
|
self.info = load_info(self.root)
|
||||||
self.stats = load_stats(self.root)
|
check_version_compatibility(self.repo_id, self._version, CODEBASE_VERSION)
|
||||||
self.tasks = load_tasks(self.root)
|
self.tasks, self.task_to_task_index = load_tasks(self.root)
|
||||||
self.episodes = load_episodes(self.root)
|
self.episodes = load_episodes(self.root)
|
||||||
|
if self._version < packaging.version.parse("v2.1"):
|
||||||
|
self.stats = load_stats(self.root)
|
||||||
|
self.episodes_stats = backward_compatible_episodes_stats(self.stats, self.episodes)
|
||||||
|
else:
|
||||||
|
self.episodes_stats = load_episodes_stats(self.root)
|
||||||
|
self.stats = aggregate_stats(list(self.episodes_stats.values()))
|
||||||
|
|
||||||
def pull_from_repo(
|
def pull_from_repo(
|
||||||
self,
|
self,
|
||||||
|
@ -98,21 +120,16 @@ class LeRobotDatasetMetadata:
|
||||||
snapshot_download(
|
snapshot_download(
|
||||||
self.repo_id,
|
self.repo_id,
|
||||||
repo_type="dataset",
|
repo_type="dataset",
|
||||||
revision=self._hub_version,
|
revision=self.revision,
|
||||||
local_dir=self.root,
|
local_dir=self.root,
|
||||||
allow_patterns=allow_patterns,
|
allow_patterns=allow_patterns,
|
||||||
ignore_patterns=ignore_patterns,
|
ignore_patterns=ignore_patterns,
|
||||||
local_files_only=self.local_files_only,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
@cached_property
|
|
||||||
def _hub_version(self) -> str | None:
|
|
||||||
return None if self.local_files_only else get_hub_safe_version(self.repo_id, CODEBASE_VERSION)
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _version(self) -> str:
|
def _version(self) -> packaging.version.Version:
|
||||||
"""Codebase version used to create this dataset."""
|
"""Codebase version used to create this dataset."""
|
||||||
return self.info["codebase_version"]
|
return packaging.version.parse(self.info["codebase_version"])
|
||||||
|
|
||||||
def get_data_file_path(self, ep_index: int) -> Path:
|
def get_data_file_path(self, ep_index: int) -> Path:
|
||||||
ep_chunk = self.get_episode_chunk(ep_index)
|
ep_chunk = self.get_episode_chunk(ep_index)
|
||||||
|
@ -202,54 +219,65 @@ class LeRobotDatasetMetadata:
|
||||||
"""Max number of episodes per chunk."""
|
"""Max number of episodes per chunk."""
|
||||||
return self.info["chunks_size"]
|
return self.info["chunks_size"]
|
||||||
|
|
||||||
@property
|
def get_task_index(self, task: str) -> int | None:
|
||||||
def task_to_task_index(self) -> dict:
|
|
||||||
return {task: task_idx for task_idx, task in self.tasks.items()}
|
|
||||||
|
|
||||||
def get_task_index(self, task: str) -> int:
|
|
||||||
"""
|
"""
|
||||||
Given a task in natural language, returns its task_index if the task already exists in the dataset,
|
Given a task in natural language, returns its task_index if the task already exists in the dataset,
|
||||||
otherwise creates a new task_index.
|
otherwise return None.
|
||||||
"""
|
"""
|
||||||
task_index = self.task_to_task_index.get(task, None)
|
return self.task_to_task_index.get(task, None)
|
||||||
return task_index if task_index is not None else self.total_tasks
|
|
||||||
|
|
||||||
def save_episode(self, episode_index: int, episode_length: int, task: str, task_index: int) -> None:
|
def add_task(self, task: str):
|
||||||
self.info["total_episodes"] += 1
|
"""
|
||||||
self.info["total_frames"] += episode_length
|
Given a task in natural language, add it to the dictionary of tasks.
|
||||||
|
"""
|
||||||
|
if task in self.task_to_task_index:
|
||||||
|
raise ValueError(f"The task '{task}' already exists and can't be added twice.")
|
||||||
|
|
||||||
if task_index not in self.tasks:
|
task_index = self.info["total_tasks"]
|
||||||
self.info["total_tasks"] += 1
|
self.task_to_task_index[task] = task_index
|
||||||
self.tasks[task_index] = task
|
self.tasks[task_index] = task
|
||||||
|
self.info["total_tasks"] += 1
|
||||||
|
|
||||||
task_dict = {
|
task_dict = {
|
||||||
"task_index": task_index,
|
"task_index": task_index,
|
||||||
"task": task,
|
"task": task,
|
||||||
}
|
}
|
||||||
append_jsonlines(task_dict, self.root / TASKS_PATH)
|
append_jsonlines(task_dict, self.root / TASKS_PATH)
|
||||||
|
|
||||||
|
def save_episode(
|
||||||
|
self,
|
||||||
|
episode_index: int,
|
||||||
|
episode_length: int,
|
||||||
|
episode_tasks: list[str],
|
||||||
|
episode_stats: dict[str, dict],
|
||||||
|
) -> None:
|
||||||
|
self.info["total_episodes"] += 1
|
||||||
|
self.info["total_frames"] += episode_length
|
||||||
|
|
||||||
chunk = self.get_episode_chunk(episode_index)
|
chunk = self.get_episode_chunk(episode_index)
|
||||||
if chunk >= self.total_chunks:
|
if chunk >= self.total_chunks:
|
||||||
self.info["total_chunks"] += 1
|
self.info["total_chunks"] += 1
|
||||||
|
|
||||||
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
|
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
|
||||||
self.info["total_videos"] += len(self.video_keys)
|
self.info["total_videos"] += len(self.video_keys)
|
||||||
write_json(self.info, self.root / INFO_PATH)
|
if len(self.video_keys) > 0:
|
||||||
|
self.update_video_info()
|
||||||
|
|
||||||
|
write_info(self.info, self.root)
|
||||||
|
|
||||||
episode_dict = {
|
episode_dict = {
|
||||||
"episode_index": episode_index,
|
"episode_index": episode_index,
|
||||||
"tasks": [task],
|
"tasks": episode_tasks,
|
||||||
"length": episode_length,
|
"length": episode_length,
|
||||||
}
|
}
|
||||||
self.episodes.append(episode_dict)
|
self.episodes[episode_index] = episode_dict
|
||||||
append_jsonlines(episode_dict, self.root / EPISODES_PATH)
|
write_episode(episode_dict, self.root)
|
||||||
|
|
||||||
# TODO(aliberts): refactor stats in save_episodes
|
self.episodes_stats[episode_index] = episode_stats
|
||||||
# image_sampling = int(self.fps / 2) # sample 2 img/s for the stats
|
self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats else episode_stats
|
||||||
# ep_stats = compute_episode_stats(episode_buffer, self.features, episode_length, image_sampling=image_sampling)
|
write_episode_stats(episode_index, episode_stats, self.root)
|
||||||
# ep_stats = serialize_dict(ep_stats)
|
|
||||||
# append_jsonlines(ep_stats, self.root / STATS_PATH)
|
|
||||||
|
|
||||||
def write_video_info(self) -> None:
|
def update_video_info(self) -> None:
|
||||||
"""
|
"""
|
||||||
Warning: this function writes info from first episode videos, implicitly assuming that all videos have
|
Warning: this function writes info from first episode videos, implicitly assuming that all videos have
|
||||||
been encoded the same way. Also, this means it assumes the first episode exists.
|
been encoded the same way. Also, this means it assumes the first episode exists.
|
||||||
|
@ -259,8 +287,6 @@ class LeRobotDatasetMetadata:
|
||||||
video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
|
video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
|
||||||
self.info["features"][key]["info"] = get_video_info(video_path)
|
self.info["features"][key]["info"] = get_video_info(video_path)
|
||||||
|
|
||||||
write_json(self.info, self.root / INFO_PATH)
|
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
feature_keys = list(self.features)
|
feature_keys = list(self.features)
|
||||||
return (
|
return (
|
||||||
|
@ -286,7 +312,7 @@ class LeRobotDatasetMetadata:
|
||||||
"""Creates metadata for a LeRobotDataset."""
|
"""Creates metadata for a LeRobotDataset."""
|
||||||
obj = cls.__new__(cls)
|
obj = cls.__new__(cls)
|
||||||
obj.repo_id = repo_id
|
obj.repo_id = repo_id
|
||||||
obj.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
|
obj.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
|
||||||
|
|
||||||
obj.root.mkdir(parents=True, exist_ok=False)
|
obj.root.mkdir(parents=True, exist_ok=False)
|
||||||
|
|
||||||
|
@ -304,6 +330,7 @@ class LeRobotDatasetMetadata:
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# TODO(aliberts, rcadene): implement sanity check for features
|
# TODO(aliberts, rcadene): implement sanity check for features
|
||||||
|
features = {**features, **DEFAULT_FEATURES}
|
||||||
|
|
||||||
# check if none of the features contains a "/" in their names,
|
# check if none of the features contains a "/" in their names,
|
||||||
# as this would break the dict flattening in the stats computation, which uses '/' as separator
|
# as this would break the dict flattening in the stats computation, which uses '/' as separator
|
||||||
|
@ -313,12 +340,13 @@ class LeRobotDatasetMetadata:
|
||||||
|
|
||||||
features = {**features, **DEFAULT_FEATURES}
|
features = {**features, **DEFAULT_FEATURES}
|
||||||
|
|
||||||
obj.tasks, obj.stats, obj.episodes = {}, {}, []
|
obj.tasks, obj.task_to_task_index = {}, {}
|
||||||
|
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
|
||||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
||||||
if len(obj.video_keys) > 0 and not use_videos:
|
if len(obj.video_keys) > 0 and not use_videos:
|
||||||
raise ValueError()
|
raise ValueError()
|
||||||
write_json(obj.info, obj.root / INFO_PATH)
|
write_json(obj.info, obj.root / INFO_PATH)
|
||||||
obj.local_files_only = True
|
obj.revision = None
|
||||||
return obj
|
return obj
|
||||||
|
|
||||||
|
|
||||||
|
@ -331,8 +359,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
image_transforms: Callable | None = None,
|
image_transforms: Callable | None = None,
|
||||||
delta_timestamps: dict[list[float]] | None = None,
|
delta_timestamps: dict[list[float]] | None = None,
|
||||||
tolerance_s: float = 1e-4,
|
tolerance_s: float = 1e-4,
|
||||||
|
revision: str | None = None,
|
||||||
|
force_cache_sync: bool = False,
|
||||||
download_videos: bool = True,
|
download_videos: bool = True,
|
||||||
local_files_only: bool = False,
|
|
||||||
video_backend: str | None = None,
|
video_backend: str | None = None,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
|
@ -342,7 +371,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
- On your local disk in the 'root' folder. This is typically the case when you recorded your
|
- On your local disk in the 'root' folder. This is typically the case when you recorded your
|
||||||
dataset locally and you may or may not have pushed it to the hub yet. Instantiating this class
|
dataset locally and you may or may not have pushed it to the hub yet. Instantiating this class
|
||||||
with 'root' will load your dataset directly from disk. This can happen while you're offline (no
|
with 'root' will load your dataset directly from disk. This can happen while you're offline (no
|
||||||
internet connection), in that case, use local_files_only=True.
|
internet connection).
|
||||||
|
|
||||||
- On the Hugging Face Hub at the address https://huggingface.co/datasets/{repo_id} and not on
|
- On the Hugging Face Hub at the address https://huggingface.co/datasets/{repo_id} and not on
|
||||||
your local disk in the 'root' folder. Instantiating this class with this 'repo_id' will download
|
your local disk in the 'root' folder. Instantiating this class with this 'repo_id' will download
|
||||||
|
@ -362,7 +391,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
- info contains various information about the dataset like shapes, keys, fps etc.
|
- info contains various information about the dataset like shapes, keys, fps etc.
|
||||||
- stats stores the dataset statistics of the different modalities for normalization
|
- stats stores the dataset statistics of the different modalities for normalization
|
||||||
- tasks contains the prompts for each task of the dataset, which can be used for
|
- tasks contains the prompts for each task of the dataset, which can be used for
|
||||||
task-conditionned training.
|
task-conditioned training.
|
||||||
- hf_dataset (from datasets.Dataset), which will read any values from parquet files.
|
- hf_dataset (from datasets.Dataset), which will read any values from parquet files.
|
||||||
- videos (optional) from which frames are loaded to be synchronous with data from parquet files.
|
- videos (optional) from which frames are loaded to be synchronous with data from parquet files.
|
||||||
|
|
||||||
|
@ -424,24 +453,28 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
timestamps is separated to the next by 1/fps +/- tolerance_s. This also applies to frames
|
timestamps is separated to the next by 1/fps +/- tolerance_s. This also applies to frames
|
||||||
decoded from video files. It is also used to check that `delta_timestamps` (when provided) are
|
decoded from video files. It is also used to check that `delta_timestamps` (when provided) are
|
||||||
multiples of 1/fps. Defaults to 1e-4.
|
multiples of 1/fps. Defaults to 1e-4.
|
||||||
|
revision (str, optional): An optional Git revision id which can be a branch name, a tag, or a
|
||||||
|
commit hash. Defaults to current codebase version tag.
|
||||||
|
sync_cache_first (bool, optional): Flag to sync and refresh local files first. If True and files
|
||||||
|
are already present in the local cache, this will be faster. However, files loaded might not
|
||||||
|
be in sync with the version on the hub, especially if you specified 'revision'. Defaults to
|
||||||
|
False.
|
||||||
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
|
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
|
||||||
video files are already present on local disk, they won't be downloaded again. Defaults to
|
video files are already present on local disk, they won't be downloaded again. Defaults to
|
||||||
True.
|
True.
|
||||||
local_files_only (bool, optional): Flag to use local files only. If True, no requests to the hub
|
|
||||||
will be made. Defaults to False.
|
|
||||||
video_backend (str | None, optional): Video backend to use for decoding videos. There is currently
|
video_backend (str | None, optional): Video backend to use for decoding videos. There is currently
|
||||||
a single option which is the pyav decoder used by Torchvision. Defaults to pyav.
|
a single option which is the pyav decoder used by Torchvision. Defaults to pyav.
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.repo_id = repo_id
|
self.repo_id = repo_id
|
||||||
self.root = Path(root) if root else LEROBOT_HOME / repo_id
|
self.root = Path(root) if root else HF_LEROBOT_HOME / repo_id
|
||||||
self.image_transforms = image_transforms
|
self.image_transforms = image_transforms
|
||||||
self.delta_timestamps = delta_timestamps
|
self.delta_timestamps = delta_timestamps
|
||||||
self.episodes = episodes
|
self.episodes = episodes
|
||||||
self.tolerance_s = tolerance_s
|
self.tolerance_s = tolerance_s
|
||||||
|
self.revision = revision if revision else CODEBASE_VERSION
|
||||||
self.video_backend = video_backend if video_backend else "pyav"
|
self.video_backend = video_backend if video_backend else "pyav"
|
||||||
self.delta_indices = None
|
self.delta_indices = None
|
||||||
self.local_files_only = local_files_only
|
|
||||||
|
|
||||||
# Unused attributes
|
# Unused attributes
|
||||||
self.image_writer = None
|
self.image_writer = None
|
||||||
|
@ -450,64 +483,92 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
self.root.mkdir(exist_ok=True, parents=True)
|
self.root.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
# Load metadata
|
# Load metadata
|
||||||
self.meta = LeRobotDatasetMetadata(self.repo_id, self.root, self.local_files_only)
|
self.meta = LeRobotDatasetMetadata(
|
||||||
|
self.repo_id, self.root, self.revision, force_cache_sync=force_cache_sync
|
||||||
# Check version
|
)
|
||||||
check_version_compatibility(self.repo_id, self.meta._version, CODEBASE_VERSION)
|
if self.episodes is not None and self.meta._version >= packaging.version.parse("v2.1"):
|
||||||
|
episodes_stats = [self.meta.episodes_stats[ep_idx] for ep_idx in self.episodes]
|
||||||
|
self.stats = aggregate_stats(episodes_stats)
|
||||||
|
|
||||||
# Load actual data
|
# Load actual data
|
||||||
|
try:
|
||||||
|
if force_cache_sync:
|
||||||
|
raise FileNotFoundError
|
||||||
|
assert all((self.root / fpath).is_file() for fpath in self.get_episodes_file_paths())
|
||||||
|
self.hf_dataset = self.load_hf_dataset()
|
||||||
|
except (AssertionError, FileNotFoundError, NotADirectoryError):
|
||||||
|
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||||
self.download_episodes(download_videos)
|
self.download_episodes(download_videos)
|
||||||
self.hf_dataset = self.load_hf_dataset()
|
self.hf_dataset = self.load_hf_dataset()
|
||||||
|
|
||||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||||
|
|
||||||
# Check timestamps
|
# Check timestamps
|
||||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
timestamps = torch.stack(self.hf_dataset["timestamp"]).numpy()
|
||||||
|
episode_indices = torch.stack(self.hf_dataset["episode_index"]).numpy()
|
||||||
|
ep_data_index_np = {k: t.numpy() for k, t in self.episode_data_index.items()}
|
||||||
|
check_timestamps_sync(timestamps, episode_indices, ep_data_index_np, self.fps, self.tolerance_s)
|
||||||
|
|
||||||
# Setup delta_indices
|
# Setup delta_indices
|
||||||
if self.delta_timestamps is not None:
|
if self.delta_timestamps is not None:
|
||||||
check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
|
check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
|
||||||
self.delta_indices = get_delta_indices(self.delta_timestamps, self.fps)
|
self.delta_indices = get_delta_indices(self.delta_timestamps, self.fps)
|
||||||
|
|
||||||
# Available stats implies all videos have been encoded and dataset is iterable
|
|
||||||
self.consolidated = self.meta.stats is not None
|
|
||||||
|
|
||||||
def push_to_hub(
|
def push_to_hub(
|
||||||
self,
|
self,
|
||||||
|
branch: str | None = None,
|
||||||
tags: list | None = None,
|
tags: list | None = None,
|
||||||
license: str | None = "apache-2.0",
|
license: str | None = "apache-2.0",
|
||||||
|
tag_version: bool = True,
|
||||||
push_videos: bool = True,
|
push_videos: bool = True,
|
||||||
private: bool = False,
|
private: bool = False,
|
||||||
|
allow_patterns: list[str] | str | None = None,
|
||||||
|
upload_large_folder: bool = False,
|
||||||
**card_kwargs,
|
**card_kwargs,
|
||||||
) -> None:
|
) -> None:
|
||||||
if not self.consolidated:
|
|
||||||
logging.warning(
|
|
||||||
"You are trying to upload to the hub a LeRobotDataset that has not been consolidated yet. "
|
|
||||||
"Consolidating first."
|
|
||||||
)
|
|
||||||
self.consolidate()
|
|
||||||
|
|
||||||
ignore_patterns = ["images/"]
|
ignore_patterns = ["images/"]
|
||||||
if not push_videos:
|
if not push_videos:
|
||||||
ignore_patterns.append("videos/")
|
ignore_patterns.append("videos/")
|
||||||
|
|
||||||
create_repo(
|
hub_api = HfApi()
|
||||||
|
hub_api.create_repo(
|
||||||
repo_id=self.repo_id,
|
repo_id=self.repo_id,
|
||||||
private=private,
|
private=private,
|
||||||
repo_type="dataset",
|
repo_type="dataset",
|
||||||
exist_ok=True,
|
exist_ok=True,
|
||||||
)
|
)
|
||||||
|
if branch:
|
||||||
upload_folder(
|
hub_api.create_branch(
|
||||||
repo_id=self.repo_id,
|
repo_id=self.repo_id,
|
||||||
folder_path=self.root,
|
branch=branch,
|
||||||
|
revision=self.revision,
|
||||||
repo_type="dataset",
|
repo_type="dataset",
|
||||||
ignore_patterns=ignore_patterns,
|
exist_ok=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
upload_kwargs = {
|
||||||
|
"repo_id": self.repo_id,
|
||||||
|
"folder_path": self.root,
|
||||||
|
"repo_type": "dataset",
|
||||||
|
"revision": branch,
|
||||||
|
"allow_patterns": allow_patterns,
|
||||||
|
"ignore_patterns": ignore_patterns,
|
||||||
|
}
|
||||||
|
if upload_large_folder:
|
||||||
|
hub_api.upload_large_folder(**upload_kwargs)
|
||||||
|
else:
|
||||||
|
hub_api.upload_folder(**upload_kwargs)
|
||||||
|
|
||||||
|
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=branch):
|
||||||
card = create_lerobot_dataset_card(
|
card = create_lerobot_dataset_card(
|
||||||
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
|
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
|
||||||
)
|
)
|
||||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset")
|
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)
|
||||||
create_branch(repo_id=self.repo_id, branch=CODEBASE_VERSION, repo_type="dataset")
|
|
||||||
|
if tag_version:
|
||||||
|
with contextlib.suppress(RevisionNotFoundError):
|
||||||
|
hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
|
||||||
|
hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||||
|
|
||||||
def pull_from_repo(
|
def pull_from_repo(
|
||||||
self,
|
self,
|
||||||
|
@ -517,11 +578,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
snapshot_download(
|
snapshot_download(
|
||||||
self.repo_id,
|
self.repo_id,
|
||||||
repo_type="dataset",
|
repo_type="dataset",
|
||||||
revision=self.meta._hub_version,
|
revision=self.revision,
|
||||||
local_dir=self.root,
|
local_dir=self.root,
|
||||||
allow_patterns=allow_patterns,
|
allow_patterns=allow_patterns,
|
||||||
ignore_patterns=ignore_patterns,
|
ignore_patterns=ignore_patterns,
|
||||||
local_files_only=self.local_files_only,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def download_episodes(self, download_videos: bool = True) -> None:
|
def download_episodes(self, download_videos: bool = True) -> None:
|
||||||
|
@ -535,16 +595,22 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
files = None
|
files = None
|
||||||
ignore_patterns = None if download_videos else "videos/"
|
ignore_patterns = None if download_videos else "videos/"
|
||||||
if self.episodes is not None:
|
if self.episodes is not None:
|
||||||
files = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
|
files = self.get_episodes_file_paths()
|
||||||
if len(self.meta.video_keys) > 0 and download_videos:
|
|
||||||
|
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
||||||
|
|
||||||
|
def get_episodes_file_paths(self) -> list[Path]:
|
||||||
|
episodes = self.episodes if self.episodes is not None else list(range(self.meta.total_episodes))
|
||||||
|
fpaths = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in episodes]
|
||||||
|
if len(self.meta.video_keys) > 0:
|
||||||
video_files = [
|
video_files = [
|
||||||
str(self.meta.get_video_file_path(ep_idx, vid_key))
|
str(self.meta.get_video_file_path(ep_idx, vid_key))
|
||||||
for vid_key in self.meta.video_keys
|
for vid_key in self.meta.video_keys
|
||||||
for ep_idx in self.episodes
|
for ep_idx in episodes
|
||||||
]
|
]
|
||||||
files += video_files
|
fpaths += video_files
|
||||||
|
|
||||||
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
return fpaths
|
||||||
|
|
||||||
def load_hf_dataset(self) -> datasets.Dataset:
|
def load_hf_dataset(self) -> datasets.Dataset:
|
||||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||||
|
@ -557,7 +623,15 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||||
hf_dataset.set_transform(hf_transform_to_torch)
|
hf_dataset.set_transform(hf_transform_to_torch)
|
||||||
|
return hf_dataset
|
||||||
|
|
||||||
|
def create_hf_dataset(self) -> datasets.Dataset:
|
||||||
|
features = get_hf_features_from_features(self.features)
|
||||||
|
ft_dict = {col: [] for col in features}
|
||||||
|
hf_dataset = datasets.Dataset.from_dict(ft_dict, features=features, split="train")
|
||||||
|
|
||||||
|
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||||
|
hf_dataset.set_transform(hf_transform_to_torch)
|
||||||
return hf_dataset
|
return hf_dataset
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -624,7 +698,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
if key not in self.meta.video_keys
|
if key not in self.meta.video_keys
|
||||||
}
|
}
|
||||||
|
|
||||||
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict:
|
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict[str, torch.Tensor]:
|
||||||
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
||||||
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
|
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
|
||||||
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
|
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
|
||||||
|
@ -654,8 +728,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
query_indices = None
|
query_indices = None
|
||||||
if self.delta_indices is not None:
|
if self.delta_indices is not None:
|
||||||
current_ep_idx = self.episodes.index(ep_idx) if self.episodes is not None else ep_idx
|
query_indices, padding = self._get_query_indices(idx, ep_idx)
|
||||||
query_indices, padding = self._get_query_indices(idx, current_ep_idx)
|
|
||||||
query_result = self._query_hf_dataset(query_indices)
|
query_result = self._query_hf_dataset(query_indices)
|
||||||
item = {**item, **padding}
|
item = {**item, **padding}
|
||||||
for key, val in query_result.items():
|
for key, val in query_result.items():
|
||||||
|
@ -691,10 +764,13 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
def create_episode_buffer(self, episode_index: int | None = None) -> dict:
|
def create_episode_buffer(self, episode_index: int | None = None) -> dict:
|
||||||
current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
|
current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
|
||||||
return {
|
ep_buffer = {}
|
||||||
"size": 0,
|
# size and task are special cases that are not in self.features
|
||||||
**{key: current_ep_idx if key == "episode_index" else [] for key in self.features},
|
ep_buffer["size"] = 0
|
||||||
}
|
ep_buffer["task"] = []
|
||||||
|
for key in self.features:
|
||||||
|
ep_buffer[key] = current_ep_idx if key == "episode_index" else []
|
||||||
|
return ep_buffer
|
||||||
|
|
||||||
def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
|
def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
|
||||||
fpath = DEFAULT_IMAGE_PATH.format(
|
fpath = DEFAULT_IMAGE_PATH.format(
|
||||||
|
@ -716,25 +792,35 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
|
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
|
||||||
then needs to be called.
|
then needs to be called.
|
||||||
"""
|
"""
|
||||||
# TODO(aliberts, rcadene): Add sanity check for the input, check it's numpy or torch,
|
# Convert torch to numpy if needed
|
||||||
# check the dtype and shape matches, etc.
|
for name in frame:
|
||||||
|
if isinstance(frame[name], torch.Tensor):
|
||||||
|
frame[name] = frame[name].numpy()
|
||||||
|
|
||||||
|
validate_frame(frame, self.features)
|
||||||
|
|
||||||
if self.episode_buffer is None:
|
if self.episode_buffer is None:
|
||||||
self.episode_buffer = self.create_episode_buffer()
|
self.episode_buffer = self.create_episode_buffer()
|
||||||
|
|
||||||
|
# Automatically add frame_index and timestamp to episode buffer
|
||||||
frame_index = self.episode_buffer["size"]
|
frame_index = self.episode_buffer["size"]
|
||||||
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
||||||
self.episode_buffer["frame_index"].append(frame_index)
|
self.episode_buffer["frame_index"].append(frame_index)
|
||||||
self.episode_buffer["timestamp"].append(timestamp)
|
self.episode_buffer["timestamp"].append(timestamp)
|
||||||
|
|
||||||
|
# Add frame features to episode_buffer
|
||||||
for key in frame:
|
for key in frame:
|
||||||
if key not in self.features:
|
if key == "task":
|
||||||
raise ValueError(key)
|
# Note: we associate the task in natural language to its task index during `save_episode`
|
||||||
|
self.episode_buffer["task"].append(frame["task"])
|
||||||
|
continue
|
||||||
|
|
||||||
if self.features[key]["dtype"] not in ["image", "video"]:
|
if key not in self.features:
|
||||||
item = frame[key].numpy() if isinstance(frame[key], torch.Tensor) else frame[key]
|
raise ValueError(
|
||||||
self.episode_buffer[key].append(item)
|
f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
|
||||||
elif self.features[key]["dtype"] in ["image", "video"]:
|
)
|
||||||
|
|
||||||
|
if self.features[key]["dtype"] in ["image", "video"]:
|
||||||
img_path = self._get_image_file_path(
|
img_path = self._get_image_file_path(
|
||||||
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
|
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
|
||||||
)
|
)
|
||||||
|
@ -742,80 +828,95 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
img_path.parent.mkdir(parents=True, exist_ok=True)
|
img_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
self._save_image(frame[key], img_path)
|
self._save_image(frame[key], img_path)
|
||||||
self.episode_buffer[key].append(str(img_path))
|
self.episode_buffer[key].append(str(img_path))
|
||||||
|
else:
|
||||||
|
self.episode_buffer[key].append(frame[key])
|
||||||
|
|
||||||
self.episode_buffer["size"] += 1
|
self.episode_buffer["size"] += 1
|
||||||
|
|
||||||
def save_episode(self, task: str, encode_videos: bool = True, episode_data: dict | None = None) -> None:
|
def save_episode(self, episode_data: dict | None = None) -> None:
|
||||||
"""
|
"""
|
||||||
This will save to disk the current episode in self.episode_buffer. Note that since it affects files on
|
This will save to disk the current episode in self.episode_buffer.
|
||||||
disk, it sets self.consolidated to False to ensure proper consolidation later on before uploading to
|
|
||||||
the hub.
|
|
||||||
|
|
||||||
Use 'encode_videos' if you want to encode videos during the saving of this episode. Otherwise,
|
Args:
|
||||||
you can do it later with dataset.consolidate(). This is to give more flexibility on when to spend
|
episode_data (dict | None, optional): Dict containing the episode data to save. If None, this will
|
||||||
time for video encoding.
|
save the current episode in self.episode_buffer, which is filled with 'add_frame'. Defaults to
|
||||||
|
None.
|
||||||
"""
|
"""
|
||||||
if not episode_data:
|
if not episode_data:
|
||||||
episode_buffer = self.episode_buffer
|
episode_buffer = self.episode_buffer
|
||||||
|
|
||||||
|
validate_episode_buffer(episode_buffer, self.meta.total_episodes, self.features)
|
||||||
|
|
||||||
|
# size and task are special cases that won't be added to hf_dataset
|
||||||
episode_length = episode_buffer.pop("size")
|
episode_length = episode_buffer.pop("size")
|
||||||
|
tasks = episode_buffer.pop("task")
|
||||||
|
episode_tasks = list(set(tasks))
|
||||||
episode_index = episode_buffer["episode_index"]
|
episode_index = episode_buffer["episode_index"]
|
||||||
if episode_index != self.meta.total_episodes:
|
|
||||||
# TODO(aliberts): Add option to use existing episode_index
|
|
||||||
raise NotImplementedError(
|
|
||||||
"You might have manually provided the episode_buffer with an episode_index that doesn't "
|
|
||||||
"match the total number of episodes in the dataset. This is not supported for now."
|
|
||||||
)
|
|
||||||
|
|
||||||
if episode_length == 0:
|
episode_buffer["index"] = np.arange(self.meta.total_frames, self.meta.total_frames + episode_length)
|
||||||
raise ValueError(
|
episode_buffer["episode_index"] = np.full((episode_length,), episode_index)
|
||||||
"You must add one or several frames with `add_frame` before calling `add_episode`."
|
|
||||||
)
|
|
||||||
|
|
||||||
|
# Add new tasks to the tasks dictionary
|
||||||
|
for task in episode_tasks:
|
||||||
task_index = self.meta.get_task_index(task)
|
task_index = self.meta.get_task_index(task)
|
||||||
|
if task_index is None:
|
||||||
|
self.meta.add_task(task)
|
||||||
|
|
||||||
if not set(episode_buffer.keys()) == set(self.features):
|
# Given tasks in natural language, find their corresponding task indices
|
||||||
raise ValueError()
|
episode_buffer["task_index"] = np.array([self.meta.get_task_index(task) for task in tasks])
|
||||||
|
|
||||||
for key, ft in self.features.items():
|
for key, ft in self.features.items():
|
||||||
if key == "index":
|
# index, episode_index, task_index are already processed above, and image and video
|
||||||
episode_buffer[key] = np.arange(
|
# are processed separately by storing image path and frame info as meta data
|
||||||
self.meta.total_frames, self.meta.total_frames + episode_length
|
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
|
||||||
)
|
|
||||||
elif key == "episode_index":
|
|
||||||
episode_buffer[key] = np.full((episode_length,), episode_index)
|
|
||||||
elif key == "task_index":
|
|
||||||
episode_buffer[key] = np.full((episode_length,), task_index)
|
|
||||||
elif ft["dtype"] in ["image", "video"]:
|
|
||||||
continue
|
continue
|
||||||
elif len(ft["shape"]) == 1 and ft["shape"][0] == 1:
|
|
||||||
episode_buffer[key] = np.array(episode_buffer[key], dtype=ft["dtype"])
|
|
||||||
elif len(ft["shape"]) == 1 and ft["shape"][0] > 1:
|
|
||||||
episode_buffer[key] = np.stack(episode_buffer[key])
|
episode_buffer[key] = np.stack(episode_buffer[key])
|
||||||
else:
|
|
||||||
raise ValueError(key)
|
|
||||||
|
|
||||||
self._wait_image_writer()
|
self._wait_image_writer()
|
||||||
self._save_episode_table(episode_buffer, episode_index)
|
self._save_episode_table(episode_buffer, episode_index)
|
||||||
|
ep_stats = compute_episode_stats(episode_buffer, self.features)
|
||||||
|
|
||||||
self.meta.save_episode(episode_index, episode_length, task, task_index)
|
if len(self.meta.video_keys) > 0:
|
||||||
|
|
||||||
if encode_videos and len(self.meta.video_keys) > 0:
|
|
||||||
video_paths = self.encode_episode_videos(episode_index)
|
video_paths = self.encode_episode_videos(episode_index)
|
||||||
for key in self.meta.video_keys:
|
for key in self.meta.video_keys:
|
||||||
episode_buffer[key] = video_paths[key]
|
episode_buffer[key] = video_paths[key]
|
||||||
|
|
||||||
|
# `meta.save_episode` be executed after encoding the videos
|
||||||
|
self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats)
|
||||||
|
|
||||||
|
ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
|
||||||
|
ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
|
||||||
|
check_timestamps_sync(
|
||||||
|
episode_buffer["timestamp"],
|
||||||
|
episode_buffer["episode_index"],
|
||||||
|
ep_data_index_np,
|
||||||
|
self.fps,
|
||||||
|
self.tolerance_s,
|
||||||
|
)
|
||||||
|
|
||||||
|
video_files = list(self.root.rglob("*.mp4"))
|
||||||
|
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
||||||
|
|
||||||
|
parquet_files = list(self.root.rglob("*.parquet"))
|
||||||
|
assert len(parquet_files) == self.num_episodes
|
||||||
|
|
||||||
|
# delete images
|
||||||
|
img_dir = self.root / "images"
|
||||||
|
if img_dir.is_dir():
|
||||||
|
shutil.rmtree(self.root / "images")
|
||||||
|
|
||||||
if not episode_data: # Reset the buffer
|
if not episode_data: # Reset the buffer
|
||||||
self.episode_buffer = self.create_episode_buffer()
|
self.episode_buffer = self.create_episode_buffer()
|
||||||
|
|
||||||
self.consolidated = False
|
|
||||||
|
|
||||||
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
|
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
|
||||||
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
|
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
|
||||||
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
|
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
|
||||||
|
ep_dataset = embed_images(ep_dataset)
|
||||||
|
self.hf_dataset = concatenate_datasets([self.hf_dataset, ep_dataset])
|
||||||
|
self.hf_dataset.set_transform(hf_transform_to_torch)
|
||||||
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
|
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
|
||||||
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
|
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
write_parquet(ep_dataset, ep_data_path)
|
ep_dataset.to_parquet(ep_data_path)
|
||||||
|
|
||||||
def clear_episode_buffer(self) -> None:
|
def clear_episode_buffer(self) -> None:
|
||||||
episode_index = self.episode_buffer["episode_index"]
|
episode_index = self.episode_buffer["episode_index"]
|
||||||
|
@ -884,38 +985,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
return video_paths
|
return video_paths
|
||||||
|
|
||||||
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
|
|
||||||
self.hf_dataset = self.load_hf_dataset()
|
|
||||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
|
||||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
|
||||||
|
|
||||||
if len(self.meta.video_keys) > 0:
|
|
||||||
self.encode_videos()
|
|
||||||
self.meta.write_video_info()
|
|
||||||
|
|
||||||
if not keep_image_files:
|
|
||||||
img_dir = self.root / "images"
|
|
||||||
if img_dir.is_dir():
|
|
||||||
shutil.rmtree(self.root / "images")
|
|
||||||
|
|
||||||
video_files = list(self.root.rglob("*.mp4"))
|
|
||||||
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
|
||||||
|
|
||||||
parquet_files = list(self.root.rglob("*.parquet"))
|
|
||||||
assert len(parquet_files) == self.num_episodes
|
|
||||||
|
|
||||||
if run_compute_stats:
|
|
||||||
self.stop_image_writer()
|
|
||||||
# TODO(aliberts): refactor stats in save_episodes
|
|
||||||
self.meta.stats = compute_stats(self)
|
|
||||||
serialized_stats = serialize_dict(self.meta.stats)
|
|
||||||
write_json(serialized_stats, self.root / STATS_PATH)
|
|
||||||
self.consolidated = True
|
|
||||||
else:
|
|
||||||
logging.warning(
|
|
||||||
"Skipping computation of the dataset statistics, dataset is not fully consolidated."
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create(
|
def create(
|
||||||
cls,
|
cls,
|
||||||
|
@ -944,7 +1013,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
)
|
)
|
||||||
obj.repo_id = obj.meta.repo_id
|
obj.repo_id = obj.meta.repo_id
|
||||||
obj.root = obj.meta.root
|
obj.root = obj.meta.root
|
||||||
obj.local_files_only = obj.meta.local_files_only
|
obj.revision = None
|
||||||
obj.tolerance_s = tolerance_s
|
obj.tolerance_s = tolerance_s
|
||||||
obj.image_writer = None
|
obj.image_writer = None
|
||||||
|
|
||||||
|
@ -954,14 +1023,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||||
# TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
|
# TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
|
||||||
obj.episode_buffer = obj.create_episode_buffer()
|
obj.episode_buffer = obj.create_episode_buffer()
|
||||||
|
|
||||||
# This bool indicates that the current LeRobotDataset instance is in sync with the files on disk. It
|
|
||||||
# is used to know when certain operations are need (for instance, computing dataset statistics). In
|
|
||||||
# order to be able to push the dataset to the hub, it needs to be consolidated first by calling
|
|
||||||
# self.consolidate().
|
|
||||||
obj.consolidated = True
|
|
||||||
|
|
||||||
obj.episodes = None
|
obj.episodes = None
|
||||||
obj.hf_dataset = None
|
obj.hf_dataset = obj.create_hf_dataset()
|
||||||
obj.image_transforms = None
|
obj.image_transforms = None
|
||||||
obj.delta_timestamps = None
|
obj.delta_timestamps = None
|
||||||
obj.delta_indices = None
|
obj.delta_indices = None
|
||||||
|
@ -986,12 +1049,11 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||||
delta_timestamps: dict[list[float]] | None = None,
|
delta_timestamps: dict[list[float]] | None = None,
|
||||||
tolerances_s: dict | None = None,
|
tolerances_s: dict | None = None,
|
||||||
download_videos: bool = True,
|
download_videos: bool = True,
|
||||||
local_files_only: bool = False,
|
|
||||||
video_backend: str | None = None,
|
video_backend: str | None = None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.repo_ids = repo_ids
|
self.repo_ids = repo_ids
|
||||||
self.root = Path(root) if root else LEROBOT_HOME
|
self.root = Path(root) if root else HF_LEROBOT_HOME
|
||||||
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
|
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
|
||||||
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
||||||
# are handled by this class.
|
# are handled by this class.
|
||||||
|
@ -1004,7 +1066,6 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||||
delta_timestamps=delta_timestamps,
|
delta_timestamps=delta_timestamps,
|
||||||
tolerance_s=self.tolerances_s[repo_id],
|
tolerance_s=self.tolerances_s[repo_id],
|
||||||
download_videos=download_videos,
|
download_videos=download_videos,
|
||||||
local_files_only=local_files_only,
|
|
||||||
video_backend=video_backend,
|
video_backend=video_backend,
|
||||||
)
|
)
|
||||||
for repo_id in repo_ids
|
for repo_id in repo_ids
|
||||||
|
@ -1032,7 +1093,10 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
self.image_transforms = image_transforms
|
self.image_transforms = image_transforms
|
||||||
self.delta_timestamps = delta_timestamps
|
self.delta_timestamps = delta_timestamps
|
||||||
self.stats = aggregate_stats(self._datasets)
|
# TODO(rcadene, aliberts): We should not perform this aggregation for datasets
|
||||||
|
# with multiple robots of different ranges. Instead we should have one normalization
|
||||||
|
# per robot.
|
||||||
|
self.stats = aggregate_stats([dataset.meta.stats for dataset in self._datasets])
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def repo_id_to_index(self):
|
def repo_id_to_index(self):
|
||||||
|
|
|
@ -1,56 +0,0 @@
|
||||||
## Using / Updating `CODEBASE_VERSION` (for maintainers)
|
|
||||||
|
|
||||||
Since our dataset pushed to the hub are decoupled with the evolution of this repo, we ensure compatibility of
|
|
||||||
the datasets with our code, we use a `CODEBASE_VERSION` (defined in
|
|
||||||
lerobot/common/datasets/lerobot_dataset.py) variable.
|
|
||||||
|
|
||||||
For instance, [`lerobot/pusht`](https://huggingface.co/datasets/lerobot/pusht) has many versions to maintain backward compatibility between LeRobot codebase versions:
|
|
||||||
- [v1.0](https://huggingface.co/datasets/lerobot/pusht/tree/v1.0)
|
|
||||||
- [v1.1](https://huggingface.co/datasets/lerobot/pusht/tree/v1.1)
|
|
||||||
- [v1.2](https://huggingface.co/datasets/lerobot/pusht/tree/v1.2)
|
|
||||||
- [v1.3](https://huggingface.co/datasets/lerobot/pusht/tree/v1.3)
|
|
||||||
- [v1.4](https://huggingface.co/datasets/lerobot/pusht/tree/v1.4)
|
|
||||||
- [v1.5](https://huggingface.co/datasets/lerobot/pusht/tree/v1.5)
|
|
||||||
- [v1.6](https://huggingface.co/datasets/lerobot/pusht/tree/v1.6) <-- last version
|
|
||||||
- [main](https://huggingface.co/datasets/lerobot/pusht/tree/main) <-- points to the last version
|
|
||||||
|
|
||||||
Starting with v1.6, every dataset pushed to the hub or saved locally also have this version number in their
|
|
||||||
`info.json` metadata.
|
|
||||||
|
|
||||||
### Uploading a new dataset
|
|
||||||
If you are pushing a new dataset, you don't need to worry about any of the instructions below, nor to be
|
|
||||||
compatible with previous codebase versions. The `push_dataset_to_hub.py` script will automatically tag your
|
|
||||||
dataset with the current `CODEBASE_VERSION`.
|
|
||||||
|
|
||||||
### Updating an existing dataset
|
|
||||||
If you want to update an existing dataset, you need to change the `CODEBASE_VERSION` from `lerobot_dataset.py`
|
|
||||||
before running `push_dataset_to_hub.py`. This is especially useful if you introduce a breaking change
|
|
||||||
intentionally or not (i.e. something not backward compatible such as modifying the reward functions used,
|
|
||||||
deleting some frames at the end of an episode, etc.). That way, people running a previous version of the
|
|
||||||
codebase won't be affected by your change and backward compatibility is maintained.
|
|
||||||
|
|
||||||
However, you will need to update the version of ALL the other datasets so that they have the new
|
|
||||||
`CODEBASE_VERSION` as a branch in their hugging face dataset repository. Don't worry, there is an easy way
|
|
||||||
that doesn't require to run `push_dataset_to_hub.py`. You can just "branch-out" from the `main` branch on HF
|
|
||||||
dataset repo by running this script which corresponds to a `git checkout -b` (so no copy or upload needed):
|
|
||||||
|
|
||||||
```python
|
|
||||||
from huggingface_hub import HfApi
|
|
||||||
|
|
||||||
from lerobot import available_datasets
|
|
||||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
|
||||||
|
|
||||||
api = HfApi()
|
|
||||||
|
|
||||||
for repo_id in available_datasets:
|
|
||||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
|
||||||
branches = [b.name for b in dataset_info.branches]
|
|
||||||
if CODEBASE_VERSION in branches:
|
|
||||||
print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
# Now create a branch named after the new version by branching out from "main"
|
|
||||||
# which is expected to be the preceding version
|
|
||||||
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
|
|
||||||
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
|
|
||||||
```
|
|
|
@ -152,7 +152,7 @@ def download_raw(raw_dir: Path, repo_id: str):
|
||||||
stacklevel=1,
|
stacklevel=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Send warning if raw_dir isn't well formated
|
# Send warning if raw_dir isn't well formatted
|
||||||
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
|
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that
|
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that
|
||||||
|
|
|
@ -68,9 +68,9 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||||
modality_df,
|
modality_df,
|
||||||
on="timestamp_utc",
|
on="timestamp_utc",
|
||||||
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
|
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
|
||||||
# matching timestamps that are too far appart, in order to fit the backward constraints. It's not the case for "nearest".
|
# matching timestamps that are too far apart, in order to fit the backward constraints. It's not the case for "nearest".
|
||||||
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
|
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
|
||||||
# are too far appart.
|
# are too far apart.
|
||||||
direction="nearest",
|
direction="nearest",
|
||||||
tolerance=pd.Timedelta(f"{1 / fps} seconds"),
|
tolerance=pd.Timedelta(f"{1 / fps} seconds"),
|
||||||
)
|
)
|
||||||
|
@ -126,7 +126,7 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||||
videos_dir.parent.mkdir(parents=True, exist_ok=True)
|
videos_dir.parent.mkdir(parents=True, exist_ok=True)
|
||||||
videos_dir.symlink_to((raw_dir / "videos").absolute())
|
videos_dir.symlink_to((raw_dir / "videos").absolute())
|
||||||
|
|
||||||
# sanity check the video paths are well formated
|
# sanity check the video paths are well formatted
|
||||||
for key in df:
|
for key in df:
|
||||||
if "observation.images." not in key:
|
if "observation.images." not in key:
|
||||||
continue
|
continue
|
||||||
|
@ -143,7 +143,7 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
||||||
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
|
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
|
||||||
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
|
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
|
||||||
|
|
||||||
# sanity check the video path is well formated
|
# sanity check the video path is well formatted
|
||||||
video_path = videos_dir.parent / data_dict[key][0]["path"]
|
video_path = videos_dir.parent / data_dict[key][0]["path"]
|
||||||
if not video_path.exists():
|
if not video_path.exists():
|
||||||
raise ValueError(f"Video file not found in {video_path}")
|
raise ValueError(f"Video file not found in {video_path}")
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
For all datasets in the RLDS format.
|
For all datasets in the RLDS format.
|
||||||
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
|
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
|
||||||
|
|
||||||
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
|
NOTE: You need to install tensorflow and tensorflow_datasets before running this script.
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
python lerobot/scripts/push_dataset_to_hub.py \
|
python lerobot/scripts/push_dataset_to_hub.py \
|
||||||
|
|
|
@ -13,10 +13,10 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import contextlib
|
||||||
import importlib.resources
|
import importlib.resources
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
import textwrap
|
|
||||||
from collections.abc import Iterator
|
from collections.abc import Iterator
|
||||||
from itertools import accumulate
|
from itertools import accumulate
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
@ -27,14 +27,21 @@ from typing import Any
|
||||||
import datasets
|
import datasets
|
||||||
import jsonlines
|
import jsonlines
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyarrow.compute as pc
|
import packaging.version
|
||||||
import torch
|
import torch
|
||||||
from datasets.table import embed_table_storage
|
from datasets.table import embed_table_storage
|
||||||
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
|
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
|
||||||
|
from huggingface_hub.errors import RevisionNotFoundError
|
||||||
from PIL import Image as PILImage
|
from PIL import Image as PILImage
|
||||||
from torchvision import transforms
|
from torchvision import transforms
|
||||||
|
|
||||||
|
from lerobot.common.datasets.backward_compatibility import (
|
||||||
|
V21_MESSAGE,
|
||||||
|
BackwardCompatibilityError,
|
||||||
|
ForwardCompatibilityError,
|
||||||
|
)
|
||||||
from lerobot.common.robot_devices.robots.utils import Robot
|
from lerobot.common.robot_devices.robots.utils import Robot
|
||||||
|
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
|
||||||
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
|
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
|
||||||
|
|
||||||
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||||
|
@ -42,6 +49,7 @@ DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||||
INFO_PATH = "meta/info.json"
|
INFO_PATH = "meta/info.json"
|
||||||
EPISODES_PATH = "meta/episodes.jsonl"
|
EPISODES_PATH = "meta/episodes.jsonl"
|
||||||
STATS_PATH = "meta/stats.json"
|
STATS_PATH = "meta/stats.json"
|
||||||
|
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
|
||||||
TASKS_PATH = "meta/tasks.jsonl"
|
TASKS_PATH = "meta/tasks.jsonl"
|
||||||
|
|
||||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||||
|
@ -112,17 +120,26 @@ def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
|
||||||
|
|
||||||
|
|
||||||
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
|
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
|
||||||
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
|
serialized_dict = {}
|
||||||
|
for key, value in flatten_dict(stats).items():
|
||||||
|
if isinstance(value, (torch.Tensor, np.ndarray)):
|
||||||
|
serialized_dict[key] = value.tolist()
|
||||||
|
elif isinstance(value, np.generic):
|
||||||
|
serialized_dict[key] = value.item()
|
||||||
|
elif isinstance(value, (int, float)):
|
||||||
|
serialized_dict[key] = value
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"The value '{value}' of type '{type(value)}' is not supported.")
|
||||||
return unflatten_dict(serialized_dict)
|
return unflatten_dict(serialized_dict)
|
||||||
|
|
||||||
|
|
||||||
def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None:
|
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
|
||||||
# Embed image bytes into the table before saving to parquet
|
# Embed image bytes into the table before saving to parquet
|
||||||
format = dataset.format
|
format = dataset.format
|
||||||
dataset = dataset.with_format("arrow")
|
dataset = dataset.with_format("arrow")
|
||||||
dataset = dataset.map(embed_table_storage, batched=False)
|
dataset = dataset.map(embed_table_storage, batched=False)
|
||||||
dataset = dataset.with_format(**format)
|
dataset = dataset.with_format(**format)
|
||||||
dataset.to_parquet(fpath)
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
def load_json(fpath: Path) -> Any:
|
def load_json(fpath: Path) -> Any:
|
||||||
|
@ -153,6 +170,10 @@ def append_jsonlines(data: dict, fpath: Path) -> None:
|
||||||
writer.write(data)
|
writer.write(data)
|
||||||
|
|
||||||
|
|
||||||
|
def write_info(info: dict, local_dir: Path):
|
||||||
|
write_json(info, local_dir / INFO_PATH)
|
||||||
|
|
||||||
|
|
||||||
def load_info(local_dir: Path) -> dict:
|
def load_info(local_dir: Path) -> dict:
|
||||||
info = load_json(local_dir / INFO_PATH)
|
info = load_json(local_dir / INFO_PATH)
|
||||||
for ft in info["features"].values():
|
for ft in info["features"].values():
|
||||||
|
@ -160,29 +181,76 @@ def load_info(local_dir: Path) -> dict:
|
||||||
return info
|
return info
|
||||||
|
|
||||||
|
|
||||||
def load_stats(local_dir: Path) -> dict:
|
def write_stats(stats: dict, local_dir: Path):
|
||||||
if not (local_dir / STATS_PATH).exists():
|
serialized_stats = serialize_dict(stats)
|
||||||
return None
|
write_json(serialized_stats, local_dir / STATS_PATH)
|
||||||
stats = load_json(local_dir / STATS_PATH)
|
|
||||||
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
|
|
||||||
|
def cast_stats_to_numpy(stats) -> dict[str, dict[str, np.ndarray]]:
|
||||||
|
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
|
||||||
return unflatten_dict(stats)
|
return unflatten_dict(stats)
|
||||||
|
|
||||||
|
|
||||||
def load_tasks(local_dir: Path) -> dict:
|
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
|
||||||
|
if not (local_dir / STATS_PATH).exists():
|
||||||
|
return None
|
||||||
|
stats = load_json(local_dir / STATS_PATH)
|
||||||
|
return cast_stats_to_numpy(stats)
|
||||||
|
|
||||||
|
|
||||||
|
def write_task(task_index: int, task: dict, local_dir: Path):
|
||||||
|
task_dict = {
|
||||||
|
"task_index": task_index,
|
||||||
|
"task": task,
|
||||||
|
}
|
||||||
|
append_jsonlines(task_dict, local_dir / TASKS_PATH)
|
||||||
|
|
||||||
|
|
||||||
|
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
|
||||||
tasks = load_jsonlines(local_dir / TASKS_PATH)
|
tasks = load_jsonlines(local_dir / TASKS_PATH)
|
||||||
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||||
|
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
|
||||||
|
return tasks, task_to_task_index
|
||||||
|
|
||||||
|
|
||||||
|
def write_episode(episode: dict, local_dir: Path):
|
||||||
|
append_jsonlines(episode, local_dir / EPISODES_PATH)
|
||||||
|
|
||||||
|
|
||||||
def load_episodes(local_dir: Path) -> dict:
|
def load_episodes(local_dir: Path) -> dict:
|
||||||
return load_jsonlines(local_dir / EPISODES_PATH)
|
episodes = load_jsonlines(local_dir / EPISODES_PATH)
|
||||||
|
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
|
||||||
|
|
||||||
|
|
||||||
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
|
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
|
||||||
|
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
|
||||||
|
# is a dictionary of stats and not an integer.
|
||||||
|
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
|
||||||
|
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
|
||||||
|
|
||||||
|
|
||||||
|
def load_episodes_stats(local_dir: Path) -> dict:
|
||||||
|
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
|
||||||
|
return {
|
||||||
|
item["episode_index"]: cast_stats_to_numpy(item["stats"])
|
||||||
|
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def backward_compatible_episodes_stats(
|
||||||
|
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
|
||||||
|
) -> dict[str, dict[str, np.ndarray]]:
|
||||||
|
return {ep_idx: stats for ep_idx in episodes}
|
||||||
|
|
||||||
|
|
||||||
|
def load_image_as_numpy(
|
||||||
|
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
|
||||||
|
) -> np.ndarray:
|
||||||
img = PILImage.open(fpath).convert("RGB")
|
img = PILImage.open(fpath).convert("RGB")
|
||||||
img_array = np.array(img, dtype=dtype)
|
img_array = np.array(img, dtype=dtype)
|
||||||
if channel_first: # (H, W, C) -> (C, H, W)
|
if channel_first: # (H, W, C) -> (C, H, W)
|
||||||
img_array = np.transpose(img_array, (2, 0, 1))
|
img_array = np.transpose(img_array, (2, 0, 1))
|
||||||
if "float" in dtype:
|
if np.issubdtype(dtype, np.floating):
|
||||||
img_array /= 255.0
|
img_array /= 255.0
|
||||||
return img_array
|
return img_array
|
||||||
|
|
||||||
|
@ -201,77 +269,95 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
|
||||||
elif first_item is None:
|
elif first_item is None:
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
|
items_dict[key] = [x if isinstance(x, str) else torch.tensor(x) for x in items_dict[key]]
|
||||||
return items_dict
|
return items_dict
|
||||||
|
|
||||||
|
|
||||||
def _get_major_minor(version: str) -> tuple[int]:
|
def is_valid_version(version: str) -> bool:
|
||||||
split = version.strip("v").split(".")
|
try:
|
||||||
return int(split[0]), int(split[1])
|
packaging.version.parse(version)
|
||||||
|
return True
|
||||||
|
except packaging.version.InvalidVersion:
|
||||||
class BackwardCompatibilityError(Exception):
|
return False
|
||||||
def __init__(self, repo_id, version):
|
|
||||||
message = textwrap.dedent(f"""
|
|
||||||
BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format.
|
|
||||||
|
|
||||||
We introduced a new format since v2.0 which is not backward compatible with v1.x.
|
|
||||||
Please, use our conversion script. Modify the following command with your own task description:
|
|
||||||
```
|
|
||||||
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
|
|
||||||
--repo-id {repo_id} \\
|
|
||||||
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
|
|
||||||
```
|
|
||||||
|
|
||||||
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.",
|
|
||||||
"Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.",
|
|
||||||
"Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.",
|
|
||||||
"Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ...
|
|
||||||
|
|
||||||
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
|
||||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
|
||||||
""")
|
|
||||||
super().__init__(message)
|
|
||||||
|
|
||||||
|
|
||||||
def check_version_compatibility(
|
def check_version_compatibility(
|
||||||
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
|
repo_id: str,
|
||||||
|
version_to_check: str | packaging.version.Version,
|
||||||
|
current_version: str | packaging.version.Version,
|
||||||
|
enforce_breaking_major: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
current_major, _ = _get_major_minor(current_version)
|
v_check = (
|
||||||
major_to_check, _ = _get_major_minor(version_to_check)
|
packaging.version.parse(version_to_check)
|
||||||
if major_to_check < current_major and enforce_breaking_major:
|
if not isinstance(version_to_check, packaging.version.Version)
|
||||||
raise BackwardCompatibilityError(repo_id, version_to_check)
|
else version_to_check
|
||||||
elif float(version_to_check.strip("v")) < float(current_version.strip("v")):
|
|
||||||
logging.warning(
|
|
||||||
f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the
|
|
||||||
codebase. The current codebase version is {current_version}. You should be fine since
|
|
||||||
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
|
|
||||||
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
|
|
||||||
)
|
)
|
||||||
|
v_current = (
|
||||||
|
packaging.version.parse(current_version)
|
||||||
|
if not isinstance(current_version, packaging.version.Version)
|
||||||
|
else current_version
|
||||||
|
)
|
||||||
|
if v_check.major < v_current.major and enforce_breaking_major:
|
||||||
|
raise BackwardCompatibilityError(repo_id, v_check)
|
||||||
|
elif v_check.minor < v_current.minor:
|
||||||
|
logging.warning(V21_MESSAGE.format(repo_id=repo_id, version=v_check))
|
||||||
|
|
||||||
|
|
||||||
def get_hub_safe_version(repo_id: str, version: str) -> str:
|
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
|
||||||
|
"""Returns available valid versions (branches and tags) on given repo."""
|
||||||
api = HfApi()
|
api = HfApi()
|
||||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||||
branches = [b.name for b in dataset_info.branches]
|
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
|
||||||
if version not in branches:
|
repo_versions = []
|
||||||
num_version = float(version.strip("v"))
|
for ref in repo_refs:
|
||||||
hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")]
|
with contextlib.suppress(packaging.version.InvalidVersion):
|
||||||
if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions):
|
repo_versions.append(packaging.version.parse(ref))
|
||||||
raise BackwardCompatibilityError(repo_id, version)
|
|
||||||
|
|
||||||
logging.warning(
|
return repo_versions
|
||||||
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
|
|
||||||
codebase. The following versions are available: {branches}.
|
|
||||||
The requested version ('{version}') is not found. You should be fine since
|
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
|
||||||
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
|
"""
|
||||||
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
|
Returns the version if available on repo or the latest compatible one.
|
||||||
|
Otherwise, will throw a `CompatibilityError`.
|
||||||
|
"""
|
||||||
|
target_version = (
|
||||||
|
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
|
||||||
)
|
)
|
||||||
if "main" not in branches:
|
hub_versions = get_repo_versions(repo_id)
|
||||||
raise ValueError(f"Version 'main' not found on {repo_id}")
|
|
||||||
return "main"
|
if not hub_versions:
|
||||||
else:
|
raise RevisionNotFoundError(
|
||||||
return version
|
f"""Your dataset must be tagged with a codebase version.
|
||||||
|
Assuming _version_ is the codebase_version value in the info.json, you can run this:
|
||||||
|
```python
|
||||||
|
from huggingface_hub import HfApi
|
||||||
|
|
||||||
|
hub_api = HfApi()
|
||||||
|
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
if target_version in hub_versions:
|
||||||
|
return f"v{target_version}"
|
||||||
|
|
||||||
|
compatibles = [
|
||||||
|
v for v in hub_versions if v.major == target_version.major and v.minor <= target_version.minor
|
||||||
|
]
|
||||||
|
if compatibles:
|
||||||
|
return_version = max(compatibles)
|
||||||
|
if return_version < target_version:
|
||||||
|
logging.warning(f"Revision {version} for {repo_id} not found, using version v{return_version}")
|
||||||
|
return f"v{return_version}"
|
||||||
|
|
||||||
|
lower_major = [v for v in hub_versions if v.major < target_version.major]
|
||||||
|
if lower_major:
|
||||||
|
raise BackwardCompatibilityError(repo_id, max(lower_major))
|
||||||
|
|
||||||
|
upper_versions = [v for v in hub_versions if v > target_version]
|
||||||
|
assert len(upper_versions) > 0
|
||||||
|
raise ForwardCompatibilityError(repo_id, min(upper_versions))
|
||||||
|
|
||||||
|
|
||||||
def get_hf_features_from_features(features: dict) -> datasets.Features:
|
def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||||
|
@ -283,11 +369,20 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||||
hf_features[key] = datasets.Image()
|
hf_features[key] = datasets.Image()
|
||||||
elif ft["shape"] == (1,):
|
elif ft["shape"] == (1,):
|
||||||
hf_features[key] = datasets.Value(dtype=ft["dtype"])
|
hf_features[key] = datasets.Value(dtype=ft["dtype"])
|
||||||
else:
|
elif len(ft["shape"]) == 1:
|
||||||
assert len(ft["shape"]) == 1
|
|
||||||
hf_features[key] = datasets.Sequence(
|
hf_features[key] = datasets.Sequence(
|
||||||
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
|
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
|
||||||
)
|
)
|
||||||
|
elif len(ft["shape"]) == 2:
|
||||||
|
hf_features[key] = datasets.Array2D(shape=ft["shape"], dtype=ft["dtype"])
|
||||||
|
elif len(ft["shape"]) == 3:
|
||||||
|
hf_features[key] = datasets.Array3D(shape=ft["shape"], dtype=ft["dtype"])
|
||||||
|
elif len(ft["shape"]) == 4:
|
||||||
|
hf_features[key] = datasets.Array4D(shape=ft["shape"], dtype=ft["dtype"])
|
||||||
|
elif len(ft["shape"]) == 5:
|
||||||
|
hf_features[key] = datasets.Array5D(shape=ft["shape"], dtype=ft["dtype"])
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Corresponding feature is not valid: {ft}")
|
||||||
|
|
||||||
return datasets.Features(hf_features)
|
return datasets.Features(hf_features)
|
||||||
|
|
||||||
|
@ -358,88 +453,85 @@ def create_empty_dataset_info(
|
||||||
|
|
||||||
|
|
||||||
def get_episode_data_index(
|
def get_episode_data_index(
|
||||||
episode_dicts: list[dict], episodes: list[int] | None = None
|
episode_dicts: dict[dict], episodes: list[int] | None = None
|
||||||
) -> dict[str, torch.Tensor]:
|
) -> dict[str, torch.Tensor]:
|
||||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
|
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
|
||||||
if episodes is not None:
|
if episodes is not None:
|
||||||
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
|
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
|
||||||
|
|
||||||
cumulative_lenghts = list(accumulate(episode_lengths.values()))
|
cumulative_lengths = list(accumulate(episode_lengths.values()))
|
||||||
return {
|
return {
|
||||||
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
|
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
|
||||||
"to": torch.LongTensor(cumulative_lenghts),
|
"to": torch.LongTensor(cumulative_lengths),
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_total_episode(
|
|
||||||
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
|
|
||||||
) -> dict[str, torch.Tensor]:
|
|
||||||
episode_indices = sorted(hf_dataset.unique("episode_index"))
|
|
||||||
total_episodes = len(episode_indices)
|
|
||||||
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
|
|
||||||
raise ValueError("episode_index values are not sorted and contiguous.")
|
|
||||||
return total_episodes
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
|
|
||||||
episode_lengths = []
|
|
||||||
table = hf_dataset.data.table
|
|
||||||
total_episodes = calculate_total_episode(hf_dataset)
|
|
||||||
for ep_idx in range(total_episodes):
|
|
||||||
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
|
|
||||||
episode_lengths.insert(ep_idx, len(ep_table))
|
|
||||||
|
|
||||||
cumulative_lenghts = list(accumulate(episode_lengths))
|
|
||||||
return {
|
|
||||||
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
|
|
||||||
"to": torch.LongTensor(cumulative_lenghts),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def check_timestamps_sync(
|
def check_timestamps_sync(
|
||||||
hf_dataset: datasets.Dataset,
|
timestamps: np.ndarray,
|
||||||
episode_data_index: dict[str, torch.Tensor],
|
episode_indices: np.ndarray,
|
||||||
|
episode_data_index: dict[str, np.ndarray],
|
||||||
fps: int,
|
fps: int,
|
||||||
tolerance_s: float,
|
tolerance_s: float,
|
||||||
raise_value_error: bool = True,
|
raise_value_error: bool = True,
|
||||||
) -> bool:
|
) -> bool:
|
||||||
"""
|
"""
|
||||||
This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to
|
This check is to make sure that each timestamp is separated from the next by (1/fps) +/- tolerance
|
||||||
account for possible numerical error.
|
to account for possible numerical error.
|
||||||
"""
|
|
||||||
timestamps = torch.stack(hf_dataset["timestamp"])
|
|
||||||
diffs = torch.diff(timestamps)
|
|
||||||
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
|
|
||||||
|
|
||||||
# We mask differences between the timestamp at the end of an episode
|
Args:
|
||||||
# and the one at the start of the next episode since these are expected
|
timestamps (np.ndarray): Array of timestamps in seconds.
|
||||||
# to be outside tolerance.
|
episode_indices (np.ndarray): Array indicating the episode index for each timestamp.
|
||||||
mask = torch.ones(len(diffs), dtype=torch.bool)
|
episode_data_index (dict[str, np.ndarray]): A dictionary that includes 'to',
|
||||||
ignored_diffs = episode_data_index["to"][:-1] - 1
|
which identifies indices for the end of each episode.
|
||||||
|
fps (int): Frames per second. Used to check the expected difference between consecutive timestamps.
|
||||||
|
tolerance_s (float): Allowed deviation from the expected (1/fps) difference.
|
||||||
|
raise_value_error (bool): Whether to raise a ValueError if the check fails.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True if all checked timestamp differences lie within tolerance, False otherwise.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the check fails and `raise_value_error` is True.
|
||||||
|
"""
|
||||||
|
if timestamps.shape != episode_indices.shape:
|
||||||
|
raise ValueError(
|
||||||
|
"timestamps and episode_indices should have the same shape. "
|
||||||
|
f"Found {timestamps.shape=} and {episode_indices.shape=}."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Consecutive differences
|
||||||
|
diffs = np.diff(timestamps)
|
||||||
|
within_tolerance = np.abs(diffs - (1.0 / fps)) <= tolerance_s
|
||||||
|
|
||||||
|
# Mask to ignore differences at the boundaries between episodes
|
||||||
|
mask = np.ones(len(diffs), dtype=bool)
|
||||||
|
ignored_diffs = episode_data_index["to"][:-1] - 1 # indices at the end of each episode
|
||||||
mask[ignored_diffs] = False
|
mask[ignored_diffs] = False
|
||||||
filtered_within_tolerance = within_tolerance[mask]
|
filtered_within_tolerance = within_tolerance[mask]
|
||||||
|
|
||||||
if not torch.all(filtered_within_tolerance):
|
# Check if all remaining diffs are within tolerance
|
||||||
|
if not np.all(filtered_within_tolerance):
|
||||||
# Track original indices before masking
|
# Track original indices before masking
|
||||||
original_indices = torch.arange(len(diffs))
|
original_indices = np.arange(len(diffs))
|
||||||
filtered_indices = original_indices[mask]
|
filtered_indices = original_indices[mask]
|
||||||
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
|
outside_tolerance_filtered_indices = np.nonzero(~filtered_within_tolerance)[0]
|
||||||
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
|
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
|
||||||
episode_indices = torch.stack(hf_dataset["episode_index"])
|
|
||||||
|
|
||||||
outside_tolerances = []
|
outside_tolerances = []
|
||||||
for idx in outside_tolerance_indices:
|
for idx in outside_tolerance_indices:
|
||||||
entry = {
|
entry = {
|
||||||
"timestamps": [timestamps[idx], timestamps[idx + 1]],
|
"timestamps": [timestamps[idx], timestamps[idx + 1]],
|
||||||
"diff": diffs[idx],
|
"diff": diffs[idx],
|
||||||
"episode_index": episode_indices[idx].item(),
|
"episode_index": episode_indices[idx].item()
|
||||||
|
if hasattr(episode_indices[idx], "item")
|
||||||
|
else episode_indices[idx],
|
||||||
}
|
}
|
||||||
outside_tolerances.append(entry)
|
outside_tolerances.append(entry)
|
||||||
|
|
||||||
if raise_value_error:
|
if raise_value_error:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
|
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
|
||||||
This might be due to synchronization issues with timestamps during data collection.
|
This might be due to synchronization issues during data collection.
|
||||||
\n{pformat(outside_tolerances)}"""
|
\n{pformat(outside_tolerances)}"""
|
||||||
)
|
)
|
||||||
return False
|
return False
|
||||||
|
@ -604,3 +696,118 @@ class IterableNamespace(SimpleNamespace):
|
||||||
|
|
||||||
def keys(self):
|
def keys(self):
|
||||||
return vars(self).keys()
|
return vars(self).keys()
|
||||||
|
|
||||||
|
|
||||||
|
def validate_frame(frame: dict, features: dict):
|
||||||
|
optional_features = {"timestamp"}
|
||||||
|
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
|
||||||
|
actual_features = set(frame.keys())
|
||||||
|
|
||||||
|
error_message = validate_features_presence(actual_features, expected_features, optional_features)
|
||||||
|
|
||||||
|
if "task" in frame:
|
||||||
|
error_message += validate_feature_string("task", frame["task"])
|
||||||
|
|
||||||
|
common_features = actual_features & (expected_features | optional_features)
|
||||||
|
for name in common_features - {"task"}:
|
||||||
|
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
|
||||||
|
|
||||||
|
if error_message:
|
||||||
|
raise ValueError(error_message)
|
||||||
|
|
||||||
|
|
||||||
|
def validate_features_presence(
|
||||||
|
actual_features: set[str], expected_features: set[str], optional_features: set[str]
|
||||||
|
):
|
||||||
|
error_message = ""
|
||||||
|
missing_features = expected_features - actual_features
|
||||||
|
extra_features = actual_features - (expected_features | optional_features)
|
||||||
|
|
||||||
|
if missing_features or extra_features:
|
||||||
|
error_message += "Feature mismatch in `frame` dictionary:\n"
|
||||||
|
if missing_features:
|
||||||
|
error_message += f"Missing features: {missing_features}\n"
|
||||||
|
if extra_features:
|
||||||
|
error_message += f"Extra features: {extra_features}\n"
|
||||||
|
|
||||||
|
return error_message
|
||||||
|
|
||||||
|
|
||||||
|
def validate_feature_dtype_and_shape(name: str, feature: dict, value: np.ndarray | PILImage.Image | str):
|
||||||
|
expected_dtype = feature["dtype"]
|
||||||
|
expected_shape = feature["shape"]
|
||||||
|
if is_valid_numpy_dtype_string(expected_dtype):
|
||||||
|
return validate_feature_numpy_array(name, expected_dtype, expected_shape, value)
|
||||||
|
elif expected_dtype in ["image", "video"]:
|
||||||
|
return validate_feature_image_or_video(name, expected_shape, value)
|
||||||
|
elif expected_dtype == "string":
|
||||||
|
return validate_feature_string(name, value)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"The feature dtype '{expected_dtype}' is not implemented yet.")
|
||||||
|
|
||||||
|
|
||||||
|
def validate_feature_numpy_array(
|
||||||
|
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
|
||||||
|
):
|
||||||
|
error_message = ""
|
||||||
|
if isinstance(value, np.ndarray):
|
||||||
|
actual_dtype = value.dtype
|
||||||
|
actual_shape = value.shape
|
||||||
|
|
||||||
|
if actual_dtype != np.dtype(expected_dtype):
|
||||||
|
error_message += f"The feature '{name}' of dtype '{actual_dtype}' is not of the expected dtype '{expected_dtype}'.\n"
|
||||||
|
|
||||||
|
if actual_shape != expected_shape:
|
||||||
|
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{expected_shape}'.\n"
|
||||||
|
else:
|
||||||
|
error_message += f"The feature '{name}' is not a 'np.ndarray'. Expected type is '{expected_dtype}', but type '{type(value)}' provided instead.\n"
|
||||||
|
|
||||||
|
return error_message
|
||||||
|
|
||||||
|
|
||||||
|
def validate_feature_image_or_video(name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image):
|
||||||
|
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
|
||||||
|
error_message = ""
|
||||||
|
if isinstance(value, np.ndarray):
|
||||||
|
actual_shape = value.shape
|
||||||
|
c, h, w = expected_shape
|
||||||
|
if len(actual_shape) != 3 or (actual_shape != (c, h, w) and actual_shape != (h, w, c)):
|
||||||
|
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{(c, h, w)}' or '{(h, w, c)}'.\n"
|
||||||
|
elif isinstance(value, PILImage.Image):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
error_message += f"The feature '{name}' is expected to be of type 'PIL.Image' or 'np.ndarray' channel first or channel last, but type '{type(value)}' provided instead.\n"
|
||||||
|
|
||||||
|
return error_message
|
||||||
|
|
||||||
|
|
||||||
|
def validate_feature_string(name: str, value: str):
|
||||||
|
if not isinstance(value, str):
|
||||||
|
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
|
||||||
|
return ""
|
||||||
|
|
||||||
|
|
||||||
|
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict):
|
||||||
|
if "size" not in episode_buffer:
|
||||||
|
raise ValueError("size key not found in episode_buffer")
|
||||||
|
|
||||||
|
if "task" not in episode_buffer:
|
||||||
|
raise ValueError("task key not found in episode_buffer")
|
||||||
|
|
||||||
|
if episode_buffer["episode_index"] != total_episodes:
|
||||||
|
# TODO(aliberts): Add option to use existing episode_index
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You might have manually provided the episode_buffer with an episode_index that doesn't "
|
||||||
|
"match the total number of episodes already in the dataset. This is not supported for now."
|
||||||
|
)
|
||||||
|
|
||||||
|
if episode_buffer["size"] == 0:
|
||||||
|
raise ValueError("You must add one or several frames with `add_frame` before calling `add_episode`.")
|
||||||
|
|
||||||
|
buffer_keys = set(episode_buffer.keys()) - {"task", "size"}
|
||||||
|
if not buffer_keys == set(features):
|
||||||
|
raise ValueError(
|
||||||
|
f"Features from `episode_buffer` don't match the ones in `features`."
|
||||||
|
f"In episode_buffer not in features: {buffer_keys - set(features)}"
|
||||||
|
f"In features not in episode_buffer: {set(features) - buffer_keys}"
|
||||||
|
)
|
||||||
|
|
|
@ -31,6 +31,7 @@ from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
|
||||||
|
|
||||||
LOCAL_DIR = Path("data/")
|
LOCAL_DIR = Path("data/")
|
||||||
|
|
||||||
|
# spellchecker:off
|
||||||
ALOHA_MOBILE_INFO = {
|
ALOHA_MOBILE_INFO = {
|
||||||
"robot_config": AlohaRobotConfig(),
|
"robot_config": AlohaRobotConfig(),
|
||||||
"license": "mit",
|
"license": "mit",
|
||||||
|
@ -856,6 +857,7 @@ DATASETS = {
|
||||||
}""").lstrip(),
|
}""").lstrip(),
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
# spellchecker:on
|
||||||
|
|
||||||
|
|
||||||
def batch_convert():
|
def batch_convert():
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
"""
|
"""
|
||||||
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
|
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
|
||||||
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
|
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
|
||||||
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
|
for each of the task performed in the dataset. This will allow to easily train models with task-conditioning.
|
||||||
|
|
||||||
We support 3 different scenarios for these tasks (see instructions below):
|
We support 3 different scenarios for these tasks (see instructions below):
|
||||||
1. Single task dataset: all episodes of your dataset have the same single task.
|
1. Single task dataset: all episodes of your dataset have the same single task.
|
||||||
|
@ -130,7 +130,7 @@ from lerobot.common.datasets.utils import (
|
||||||
create_branch,
|
create_branch,
|
||||||
create_lerobot_dataset_card,
|
create_lerobot_dataset_card,
|
||||||
flatten_dict,
|
flatten_dict,
|
||||||
get_hub_safe_version,
|
get_safe_version,
|
||||||
load_json,
|
load_json,
|
||||||
unflatten_dict,
|
unflatten_dict,
|
||||||
write_json,
|
write_json,
|
||||||
|
@ -443,7 +443,7 @@ def convert_dataset(
|
||||||
test_branch: str | None = None,
|
test_branch: str | None = None,
|
||||||
**card_kwargs,
|
**card_kwargs,
|
||||||
):
|
):
|
||||||
v1 = get_hub_safe_version(repo_id, V16)
|
v1 = get_safe_version(repo_id, V16)
|
||||||
v1x_dir = local_dir / V16 / repo_id
|
v1x_dir = local_dir / V16 / repo_id
|
||||||
v20_dir = local_dir / V20 / repo_id
|
v20_dir = local_dir / V20 / repo_id
|
||||||
v1x_dir.mkdir(parents=True, exist_ok=True)
|
v1x_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
|
@ -0,0 +1,73 @@
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from datasets import get_dataset_config_info
|
||||||
|
from huggingface_hub import HfApi
|
||||||
|
|
||||||
|
from lerobot import available_datasets
|
||||||
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||||
|
from lerobot.common.datasets.utils import INFO_PATH, write_info
|
||||||
|
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V20, SuppressWarnings
|
||||||
|
|
||||||
|
LOCAL_DIR = Path("data/")
|
||||||
|
|
||||||
|
hub_api = HfApi()
|
||||||
|
|
||||||
|
|
||||||
|
def fix_dataset(repo_id: str) -> str:
|
||||||
|
if not hub_api.revision_exists(repo_id, V20, repo_type="dataset"):
|
||||||
|
return f"{repo_id}: skipped (not in {V20})."
|
||||||
|
|
||||||
|
dataset_info = get_dataset_config_info(repo_id, "default")
|
||||||
|
with SuppressWarnings():
|
||||||
|
lerobot_metadata = LeRobotDatasetMetadata(repo_id, revision=V20, force_cache_sync=True)
|
||||||
|
|
||||||
|
meta_features = {key for key, ft in lerobot_metadata.features.items() if ft["dtype"] != "video"}
|
||||||
|
parquet_features = set(dataset_info.features)
|
||||||
|
|
||||||
|
diff_parquet_meta = parquet_features - meta_features
|
||||||
|
diff_meta_parquet = meta_features - parquet_features
|
||||||
|
|
||||||
|
if diff_parquet_meta:
|
||||||
|
raise ValueError(f"In parquet not in info.json: {parquet_features - meta_features}")
|
||||||
|
|
||||||
|
if not diff_meta_parquet:
|
||||||
|
return f"{repo_id}: skipped (no diff)"
|
||||||
|
|
||||||
|
if diff_meta_parquet:
|
||||||
|
logging.warning(f"In info.json not in parquet: {meta_features - parquet_features}")
|
||||||
|
assert diff_meta_parquet == {"language_instruction"}
|
||||||
|
lerobot_metadata.features.pop("language_instruction")
|
||||||
|
write_info(lerobot_metadata.info, lerobot_metadata.root)
|
||||||
|
commit_info = hub_api.upload_file(
|
||||||
|
path_or_fileobj=lerobot_metadata.root / INFO_PATH,
|
||||||
|
path_in_repo=INFO_PATH,
|
||||||
|
repo_id=repo_id,
|
||||||
|
repo_type="dataset",
|
||||||
|
revision=V20,
|
||||||
|
commit_message="Remove 'language_instruction'",
|
||||||
|
create_pr=True,
|
||||||
|
)
|
||||||
|
return f"{repo_id}: success - PR: {commit_info.pr_url}"
|
||||||
|
|
||||||
|
|
||||||
|
def batch_fix():
|
||||||
|
status = {}
|
||||||
|
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
|
||||||
|
logfile = LOCAL_DIR / "fix_features_v20.txt"
|
||||||
|
for num, repo_id in enumerate(available_datasets):
|
||||||
|
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
|
||||||
|
print("---------------------------------------------------------")
|
||||||
|
try:
|
||||||
|
status = fix_dataset(repo_id)
|
||||||
|
except Exception:
|
||||||
|
status = f"{repo_id}: failed\n {traceback.format_exc()}"
|
||||||
|
|
||||||
|
logging.info(status)
|
||||||
|
with open(logfile, "a") as file:
|
||||||
|
file.write(status + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
batch_fix()
|
|
@ -0,0 +1,54 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.1.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import traceback
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from huggingface_hub import HfApi
|
||||||
|
|
||||||
|
from lerobot import available_datasets
|
||||||
|
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V21, convert_dataset
|
||||||
|
|
||||||
|
LOCAL_DIR = Path("data/")
|
||||||
|
|
||||||
|
|
||||||
|
def batch_convert():
|
||||||
|
status = {}
|
||||||
|
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
|
||||||
|
logfile = LOCAL_DIR / "conversion_log_v21.txt"
|
||||||
|
hub_api = HfApi()
|
||||||
|
for num, repo_id in enumerate(available_datasets):
|
||||||
|
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
|
||||||
|
print("---------------------------------------------------------")
|
||||||
|
try:
|
||||||
|
if hub_api.revision_exists(repo_id, V21, repo_type="dataset"):
|
||||||
|
status = f"{repo_id}: success (already in {V21})."
|
||||||
|
else:
|
||||||
|
convert_dataset(repo_id)
|
||||||
|
status = f"{repo_id}: success."
|
||||||
|
except Exception:
|
||||||
|
status = f"{repo_id}: failed\n {traceback.format_exc()}"
|
||||||
|
|
||||||
|
with open(logfile, "a") as file:
|
||||||
|
file.write(status + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
batch_convert()
|
|
@ -0,0 +1,100 @@
|
||||||
|
"""
|
||||||
|
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to
|
||||||
|
2.1. It will:
|
||||||
|
|
||||||
|
- Generate per-episodes stats and writes them in `episodes_stats.jsonl`
|
||||||
|
- Check consistency between these new stats and the old ones.
|
||||||
|
- Remove the deprecated `stats.json`.
|
||||||
|
- Update codebase_version in `info.json`.
|
||||||
|
- Push this new version to the hub on the 'main' branch and tags it with "v2.1".
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py \
|
||||||
|
--repo-id=aliberts/koch_tutorial
|
||||||
|
```
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from huggingface_hub import HfApi
|
||||||
|
|
||||||
|
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||||
|
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
|
||||||
|
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
|
||||||
|
|
||||||
|
V20 = "v2.0"
|
||||||
|
V21 = "v2.1"
|
||||||
|
|
||||||
|
|
||||||
|
class SuppressWarnings:
|
||||||
|
def __enter__(self):
|
||||||
|
self.previous_level = logging.getLogger().getEffectiveLevel()
|
||||||
|
logging.getLogger().setLevel(logging.ERROR)
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
logging.getLogger().setLevel(self.previous_level)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_dataset(
|
||||||
|
repo_id: str,
|
||||||
|
branch: str | None = None,
|
||||||
|
num_workers: int = 4,
|
||||||
|
):
|
||||||
|
with SuppressWarnings():
|
||||||
|
dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True)
|
||||||
|
|
||||||
|
if (dataset.root / EPISODES_STATS_PATH).is_file():
|
||||||
|
(dataset.root / EPISODES_STATS_PATH).unlink()
|
||||||
|
|
||||||
|
convert_stats(dataset, num_workers=num_workers)
|
||||||
|
ref_stats = load_stats(dataset.root)
|
||||||
|
check_aggregate_stats(dataset, ref_stats)
|
||||||
|
|
||||||
|
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
|
||||||
|
write_info(dataset.meta.info, dataset.root)
|
||||||
|
|
||||||
|
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
|
||||||
|
|
||||||
|
# delete old stats.json file
|
||||||
|
if (dataset.root / STATS_PATH).is_file:
|
||||||
|
(dataset.root / STATS_PATH).unlink()
|
||||||
|
|
||||||
|
hub_api = HfApi()
|
||||||
|
if hub_api.file_exists(
|
||||||
|
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
|
||||||
|
):
|
||||||
|
hub_api.delete_file(
|
||||||
|
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
|
||||||
|
)
|
||||||
|
|
||||||
|
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--repo-id",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset "
|
||||||
|
"(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--branch",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Repo branch to push your dataset. Defaults to the main branch.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of workers for parallelizing stats compute. Defaults to 4.",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
convert_dataset(**vars(args))
|
|
@ -0,0 +1,85 @@
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
|
||||||
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||||
|
from lerobot.common.datasets.utils import write_episode_stats
|
||||||
|
|
||||||
|
|
||||||
|
def sample_episode_video_frames(dataset: LeRobotDataset, episode_index: int, ft_key: str) -> np.ndarray:
|
||||||
|
ep_len = dataset.meta.episodes[episode_index]["length"]
|
||||||
|
sampled_indices = sample_indices(ep_len)
|
||||||
|
query_timestamps = dataset._get_query_timestamps(0.0, {ft_key: sampled_indices})
|
||||||
|
video_frames = dataset._query_videos(query_timestamps, episode_index)
|
||||||
|
return video_frames[ft_key].numpy()
|
||||||
|
|
||||||
|
|
||||||
|
def convert_episode_stats(dataset: LeRobotDataset, ep_idx: int):
|
||||||
|
ep_start_idx = dataset.episode_data_index["from"][ep_idx]
|
||||||
|
ep_end_idx = dataset.episode_data_index["to"][ep_idx]
|
||||||
|
ep_data = dataset.hf_dataset.select(range(ep_start_idx, ep_end_idx))
|
||||||
|
|
||||||
|
ep_stats = {}
|
||||||
|
for key, ft in dataset.features.items():
|
||||||
|
if ft["dtype"] == "video":
|
||||||
|
# We sample only for videos
|
||||||
|
ep_ft_data = sample_episode_video_frames(dataset, ep_idx, key)
|
||||||
|
else:
|
||||||
|
ep_ft_data = np.array(ep_data[key])
|
||||||
|
|
||||||
|
axes_to_reduce = (0, 2, 3) if ft["dtype"] in ["image", "video"] else 0
|
||||||
|
keepdims = True if ft["dtype"] in ["image", "video"] else ep_ft_data.ndim == 1
|
||||||
|
ep_stats[key] = get_feature_stats(ep_ft_data, axis=axes_to_reduce, keepdims=keepdims)
|
||||||
|
|
||||||
|
if ft["dtype"] in ["image", "video"]: # remove batch dim
|
||||||
|
ep_stats[key] = {
|
||||||
|
k: v if k == "count" else np.squeeze(v, axis=0) for k, v in ep_stats[key].items()
|
||||||
|
}
|
||||||
|
|
||||||
|
dataset.meta.episodes_stats[ep_idx] = ep_stats
|
||||||
|
|
||||||
|
|
||||||
|
def convert_stats(dataset: LeRobotDataset, num_workers: int = 0):
|
||||||
|
assert dataset.episodes is None
|
||||||
|
print("Computing episodes stats")
|
||||||
|
total_episodes = dataset.meta.total_episodes
|
||||||
|
if num_workers > 0:
|
||||||
|
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||||
|
futures = {
|
||||||
|
executor.submit(convert_episode_stats, dataset, ep_idx): ep_idx
|
||||||
|
for ep_idx in range(total_episodes)
|
||||||
|
}
|
||||||
|
for future in tqdm(as_completed(futures), total=total_episodes):
|
||||||
|
future.result()
|
||||||
|
else:
|
||||||
|
for ep_idx in tqdm(range(total_episodes)):
|
||||||
|
convert_episode_stats(dataset, ep_idx)
|
||||||
|
|
||||||
|
for ep_idx in tqdm(range(total_episodes)):
|
||||||
|
write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
|
||||||
|
|
||||||
|
|
||||||
|
def check_aggregate_stats(
|
||||||
|
dataset: LeRobotDataset,
|
||||||
|
reference_stats: dict[str, dict[str, np.ndarray]],
|
||||||
|
video_rtol_atol: tuple[float] = (1e-2, 1e-2),
|
||||||
|
default_rtol_atol: tuple[float] = (5e-6, 6e-5),
|
||||||
|
):
|
||||||
|
"""Verifies that the aggregated stats from episodes_stats are close to reference stats."""
|
||||||
|
agg_stats = aggregate_stats(list(dataset.meta.episodes_stats.values()))
|
||||||
|
for key, ft in dataset.features.items():
|
||||||
|
# These values might need some fine-tuning
|
||||||
|
if ft["dtype"] == "video":
|
||||||
|
# to account for image sub-sampling
|
||||||
|
rtol, atol = video_rtol_atol
|
||||||
|
else:
|
||||||
|
rtol, atol = default_rtol_atol
|
||||||
|
|
||||||
|
for stat, val in agg_stats[key].items():
|
||||||
|
if key in reference_stats and stat in reference_stats[key]:
|
||||||
|
err_msg = f"feature='{key}' stats='{stat}'"
|
||||||
|
np.testing.assert_allclose(
|
||||||
|
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
|
||||||
|
)
|
|
@ -69,11 +69,11 @@ def decode_video_frames_torchvision(
|
||||||
|
|
||||||
# set the first and last requested timestamps
|
# set the first and last requested timestamps
|
||||||
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
|
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
|
||||||
first_ts = timestamps[0]
|
first_ts = min(timestamps)
|
||||||
last_ts = timestamps[-1]
|
last_ts = max(timestamps)
|
||||||
|
|
||||||
# access closest key frame of the first requested frame
|
# access closest key frame of the first requested frame
|
||||||
# Note: closest key frame timestamp is usally smaller than `first_ts` (e.g. key frame can be the first frame of the video)
|
# Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video)
|
||||||
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
|
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
|
||||||
reader.seek(first_ts, keyframes_only=keyframes_only)
|
reader.seek(first_ts, keyframes_only=keyframes_only)
|
||||||
|
|
||||||
|
|
|
@ -37,12 +37,12 @@ def make_env(cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False) -> g
|
||||||
Args:
|
Args:
|
||||||
cfg (EnvConfig): the config of the environment to instantiate.
|
cfg (EnvConfig): the config of the environment to instantiate.
|
||||||
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
|
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
|
||||||
use_async_envs (bool, optional): Wether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
||||||
False.
|
False.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError: if n_envs < 1
|
ValueError: if n_envs < 1
|
||||||
ModuleNotFoundError: If the requested env package is not intalled
|
ModuleNotFoundError: If the requested env package is not installed
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
gym.vector.VectorEnv: The parallelized gym.env instance.
|
gym.vector.VectorEnv: The parallelized gym.env instance.
|
||||||
|
|
|
@ -64,7 +64,7 @@ class ACTConfig(PreTrainedConfig):
|
||||||
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
|
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
|
||||||
original scale. Note that this is also used for normalizing the training targets.
|
original scale. Note that this is also used for normalizing the training targets.
|
||||||
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
|
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
|
||||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
|
||||||
`None` means no pretrained weights.
|
`None` means no pretrained weights.
|
||||||
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
|
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
|
||||||
convolution.
|
convolution.
|
||||||
|
|
|
@ -68,7 +68,7 @@ class DiffusionConfig(PreTrainedConfig):
|
||||||
within the image size. If None, no cropping is done.
|
within the image size. If None, no cropping is done.
|
||||||
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
||||||
mode).
|
mode).
|
||||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
|
||||||
`None` means no pretrained weights.
|
`None` means no pretrained weights.
|
||||||
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
||||||
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
||||||
|
@ -99,7 +99,7 @@ class DiffusionConfig(PreTrainedConfig):
|
||||||
num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly
|
num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly
|
||||||
spaced). If not provided, this defaults to be the same as `num_train_timesteps`.
|
spaced). If not provided, this defaults to be the same as `num_train_timesteps`.
|
||||||
do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See
|
do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See
|
||||||
`LeRobotDataset` and `load_previous_and_future_frames` for mor information. Note, this defaults
|
`LeRobotDataset` and `load_previous_and_future_frames` for more information. Note, this defaults
|
||||||
to False as the original Diffusion Policy implementation does the same.
|
to False as the original Diffusion Policy implementation does the same.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
|
@ -13,6 +13,7 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from torch import Tensor, nn
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
@ -77,17 +78,29 @@ def create_stats_buffers(
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
|
||||||
if stats:
|
if stats:
|
||||||
|
if isinstance(stats[key]["mean"], np.ndarray):
|
||||||
|
if norm_mode is NormalizationMode.MEAN_STD:
|
||||||
|
buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
|
||||||
|
buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
|
||||||
|
elif norm_mode is NormalizationMode.MIN_MAX:
|
||||||
|
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
|
||||||
|
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
|
||||||
|
elif isinstance(stats[key]["mean"], torch.Tensor):
|
||||||
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
|
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
|
||||||
# tensors anywhere (for example, when we use the same stats for normalization and
|
# tensors anywhere (for example, when we use the same stats for normalization and
|
||||||
# unnormalization). See the logic here
|
# unnormalization). See the logic here
|
||||||
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
|
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
|
||||||
if norm_mode is NormalizationMode.MEAN_STD:
|
if norm_mode is NormalizationMode.MEAN_STD:
|
||||||
buffer["mean"].data = stats[key]["mean"].clone()
|
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
|
||||||
buffer["std"].data = stats[key]["std"].clone()
|
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
|
||||||
elif norm_mode is NormalizationMode.MIN_MAX:
|
elif norm_mode is NormalizationMode.MIN_MAX:
|
||||||
buffer["min"].data = stats[key]["min"].clone()
|
buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
|
||||||
buffer["max"].data = stats[key]["max"].clone()
|
buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
|
||||||
|
else:
|
||||||
|
type_ = type(stats[key]["mean"])
|
||||||
|
raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")
|
||||||
|
|
||||||
stats_buffers[key] = buffer
|
stats_buffers[key] = buffer
|
||||||
return stats_buffers
|
return stats_buffers
|
||||||
|
@ -141,6 +154,7 @@ class Normalize(nn.Module):
|
||||||
batch = dict(batch) # shallow copy avoids mutating the input batch
|
batch = dict(batch) # shallow copy avoids mutating the input batch
|
||||||
for key, ft in self.features.items():
|
for key, ft in self.features.items():
|
||||||
if key not in batch:
|
if key not in batch:
|
||||||
|
# FIXME(aliberts, rcadene): This might lead to silent fail!
|
||||||
continue
|
continue
|
||||||
|
|
||||||
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
|
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
Convert pi0 parameters from Jax to Pytorch
|
Convert pi0 parameters from Jax to Pytorch
|
||||||
|
|
||||||
Follow [README of openpi](https://github.com/Physical-Intelligence/openpi) to create a new environment
|
Follow [README of openpi](https://github.com/Physical-Intelligence/openpi) to create a new environment
|
||||||
and install the required librairies.
|
and install the required libraries.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cd ~/code/openpi
|
cd ~/code/openpi
|
||||||
|
|
|
@ -313,7 +313,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||||
state = self.prepare_state(batch)
|
state = self.prepare_state(batch)
|
||||||
lang_tokens, lang_masks = self.prepare_language(batch)
|
lang_tokens, lang_masks = self.prepare_language(batch)
|
||||||
actions = self.prepare_action(batch)
|
actions = self.prepare_action(batch)
|
||||||
actions_is_pad = batch.get("actions_id_pad")
|
actions_is_pad = batch.get("actions_is_pad")
|
||||||
|
|
||||||
loss_dict = {}
|
loss_dict = {}
|
||||||
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
|
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
|
||||||
|
|
|
@ -76,7 +76,7 @@ class TDMPCConfig(PreTrainedConfig):
|
||||||
n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can
|
n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can
|
||||||
be zero.
|
be zero.
|
||||||
uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating
|
uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating
|
||||||
trajectory values (this is the λ coeffiecient in eqn 4 of FOWM).
|
trajectory values (this is the λ coefficient in eqn 4 of FOWM).
|
||||||
n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration.
|
n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration.
|
||||||
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
|
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
|
||||||
elites, when updating the gaussian parameters for CEM.
|
elites, when updating the gaussian parameters for CEM.
|
||||||
|
@ -165,7 +165,7 @@ class TDMPCConfig(PreTrainedConfig):
|
||||||
"""Input validation (not exhaustive)."""
|
"""Input validation (not exhaustive)."""
|
||||||
if self.n_gaussian_samples <= 0:
|
if self.n_gaussian_samples <= 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
|
f"The number of gaussian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
|
||||||
)
|
)
|
||||||
if self.normalization_mapping["ACTION"] is not NormalizationMode.MIN_MAX:
|
if self.normalization_mapping["ACTION"] is not NormalizationMode.MIN_MAX:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
|
|
@ -66,7 +66,7 @@ class VQBeTConfig(PreTrainedConfig):
|
||||||
within the image size. If None, no cropping is done.
|
within the image size. If None, no cropping is done.
|
||||||
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
||||||
mode).
|
mode).
|
||||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
|
||||||
`None` means no pretrained weights.
|
`None` means no pretrained weights.
|
||||||
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
||||||
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
||||||
|
|
|
@ -485,7 +485,7 @@ class VQBeTHead(nn.Module):
|
||||||
def forward(self, x, **kwargs) -> dict:
|
def forward(self, x, **kwargs) -> dict:
|
||||||
# N is the batch size, and T is number of action query tokens, which are process through same GPT
|
# N is the batch size, and T is number of action query tokens, which are process through same GPT
|
||||||
N, T, _ = x.shape
|
N, T, _ = x.shape
|
||||||
# we calculate N and T side parallely. Thus, the dimensions would be
|
# we calculate N and T side parallelly. Thus, the dimensions would be
|
||||||
# (batch size * number of action query tokens, action chunk size, action dimension)
|
# (batch size * number of action query tokens, action chunk size, action dimension)
|
||||||
x = einops.rearrange(x, "N T WA -> (N T) WA")
|
x = einops.rearrange(x, "N T WA -> (N T) WA")
|
||||||
|
|
||||||
|
@ -772,7 +772,7 @@ class VqVae(nn.Module):
|
||||||
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
|
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
|
||||||
The vq_layer uses residual VQs.
|
The vq_layer uses residual VQs.
|
||||||
|
|
||||||
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
|
This class contains functions for training the encoder and decoder along with the residual VQ layer (for training phase 1),
|
||||||
as well as functions to help BeT training part in training phase 2.
|
as well as functions to help BeT training part in training phase 2.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
|
@ -38,7 +38,7 @@ from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
|
||||||
This file is part of a VQ-BeT that utilizes code from the following repositories:
|
This file is part of a VQ-BeT that utilizes code from the following repositories:
|
||||||
|
|
||||||
- Vector Quantize PyTorch code is licensed under the MIT License:
|
- Vector Quantize PyTorch code is licensed under the MIT License:
|
||||||
Origianl source: https://github.com/lucidrains/vector-quantize-pytorch
|
Original source: https://github.com/lucidrains/vector-quantize-pytorch
|
||||||
|
|
||||||
- nanoGPT part is an adaptation of Andrej Karpathy's nanoGPT implementation in PyTorch.
|
- nanoGPT part is an adaptation of Andrej Karpathy's nanoGPT implementation in PyTorch.
|
||||||
Original source: https://github.com/karpathy/nanoGPT
|
Original source: https://github.com/karpathy/nanoGPT
|
||||||
|
@ -289,7 +289,7 @@ class GPT(nn.Module):
|
||||||
This file is a part for Residual Vector Quantization that utilizes code from the following repository:
|
This file is a part for Residual Vector Quantization that utilizes code from the following repository:
|
||||||
|
|
||||||
- Phil Wang's vector-quantize-pytorch implementation in PyTorch.
|
- Phil Wang's vector-quantize-pytorch implementation in PyTorch.
|
||||||
Origianl source: https://github.com/lucidrains/vector-quantize-pytorch
|
Original source: https://github.com/lucidrains/vector-quantize-pytorch
|
||||||
|
|
||||||
- The vector-quantize-pytorch code is licensed under the MIT License:
|
- The vector-quantize-pytorch code is licensed under the MIT License:
|
||||||
|
|
||||||
|
@ -1349,9 +1349,9 @@ class EuclideanCodebook(nn.Module):
|
||||||
|
|
||||||
# calculate distributed variance
|
# calculate distributed variance
|
||||||
|
|
||||||
variance_numer = reduce((data - batch_mean) ** 2, "h n d -> h 1 d", "sum")
|
variance_number = reduce((data - batch_mean) ** 2, "h n d -> h 1 d", "sum")
|
||||||
distributed.all_reduce(variance_numer)
|
distributed.all_reduce(variance_number)
|
||||||
batch_variance = variance_numer / num_vectors
|
batch_variance = variance_number / num_vectors
|
||||||
|
|
||||||
self.update_with_decay("batch_variance", batch_variance, self.affine_param_batch_decay)
|
self.update_with_decay("batch_variance", batch_variance, self.affine_param_batch_decay)
|
||||||
|
|
||||||
|
|
|
@ -60,15 +60,13 @@ class RecordControlConfig(ControlConfig):
|
||||||
num_episodes: int = 50
|
num_episodes: int = 50
|
||||||
# Encode frames in the dataset into video
|
# Encode frames in the dataset into video
|
||||||
video: bool = True
|
video: bool = True
|
||||||
# By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.
|
|
||||||
run_compute_stats: bool = True
|
|
||||||
# Upload dataset to Hugging Face hub.
|
# Upload dataset to Hugging Face hub.
|
||||||
push_to_hub: bool = True
|
push_to_hub: bool = True
|
||||||
# Upload on private repository on the Hugging Face hub.
|
# Upload on private repository on the Hugging Face hub.
|
||||||
private: bool = False
|
private: bool = False
|
||||||
# Add tags to your dataset on the hub.
|
# Add tags to your dataset on the hub.
|
||||||
tags: list[str] | None = None
|
tags: list[str] | None = None
|
||||||
# Number of subprocesses handling the saving of frames as PNGs. Set to 0 to use threads only;
|
# Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only;
|
||||||
# set to ≥1 to use subprocesses, each using threads to write images. The best number of processes
|
# set to ≥1 to use subprocesses, each using threads to write images. The best number of processes
|
||||||
# and threads depends on your system. We recommend 4 threads per camera with 0 processes.
|
# and threads depends on your system. We recommend 4 threads per camera with 0 processes.
|
||||||
# If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses.
|
# If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses.
|
||||||
|
@ -83,9 +81,6 @@ class RecordControlConfig(ControlConfig):
|
||||||
play_sounds: bool = True
|
play_sounds: bool = True
|
||||||
# Resume recording on an existing dataset.
|
# Resume recording on an existing dataset.
|
||||||
resume: bool = False
|
resume: bool = False
|
||||||
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
|
|
||||||
# Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.
|
|
||||||
local_files_only: bool = False
|
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
# HACK: We parse again the cli args here to get the pretrained path if there was one.
|
# HACK: We parse again the cli args here to get the pretrained path if there was one.
|
||||||
|
@ -130,9 +125,12 @@ class ReplayControlConfig(ControlConfig):
|
||||||
fps: int | None = None
|
fps: int | None = None
|
||||||
# Use vocal synthesis to read events.
|
# Use vocal synthesis to read events.
|
||||||
play_sounds: bool = True
|
play_sounds: bool = True
|
||||||
# TODO(rcadene, aliberts): remove local_files_only when refactor with dataset as argument
|
|
||||||
# Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.
|
|
||||||
local_files_only: bool = False
|
@ControlConfig.register_subclass("remote_robot")
|
||||||
|
@dataclass
|
||||||
|
class RemoteRobotConfig(ControlConfig):
|
||||||
|
log_interval: int = 100
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
|
|
|
@ -12,7 +12,6 @@ from functools import cache
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import torch
|
import torch
|
||||||
import tqdm
|
|
||||||
from deepdiff import DeepDiff
|
from deepdiff import DeepDiff
|
||||||
from termcolor import colored
|
from termcolor import colored
|
||||||
|
|
||||||
|
@ -183,6 +182,7 @@ def record_episode(
|
||||||
device,
|
device,
|
||||||
use_amp,
|
use_amp,
|
||||||
fps,
|
fps,
|
||||||
|
single_task,
|
||||||
):
|
):
|
||||||
control_loop(
|
control_loop(
|
||||||
robot=robot,
|
robot=robot,
|
||||||
|
@ -195,6 +195,7 @@ def record_episode(
|
||||||
use_amp=use_amp,
|
use_amp=use_amp,
|
||||||
fps=fps,
|
fps=fps,
|
||||||
teleoperate=policy is None,
|
teleoperate=policy is None,
|
||||||
|
single_task=single_task,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -210,6 +211,7 @@ def control_loop(
|
||||||
device: torch.device | str | None = None,
|
device: torch.device | str | None = None,
|
||||||
use_amp: bool | None = None,
|
use_amp: bool | None = None,
|
||||||
fps: int | None = None,
|
fps: int | None = None,
|
||||||
|
single_task: str | None = None,
|
||||||
):
|
):
|
||||||
# TODO(rcadene): Add option to record logs
|
# TODO(rcadene): Add option to record logs
|
||||||
if not robot.is_connected:
|
if not robot.is_connected:
|
||||||
|
@ -224,6 +226,9 @@ def control_loop(
|
||||||
if teleoperate and policy is not None:
|
if teleoperate and policy is not None:
|
||||||
raise ValueError("When `teleoperate` is True, `policy` should be None.")
|
raise ValueError("When `teleoperate` is True, `policy` should be None.")
|
||||||
|
|
||||||
|
if dataset is not None and single_task is None:
|
||||||
|
raise ValueError("You need to provide a task as argument in `single_task`.")
|
||||||
|
|
||||||
if dataset is not None and fps is not None and dataset.fps != fps:
|
if dataset is not None and fps is not None and dataset.fps != fps:
|
||||||
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
|
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset['fps']} != {fps}).")
|
||||||
|
|
||||||
|
@ -248,7 +253,7 @@ def control_loop(
|
||||||
action = {"action": action}
|
action = {"action": action}
|
||||||
|
|
||||||
if dataset is not None:
|
if dataset is not None:
|
||||||
frame = {**observation, **action}
|
frame = {**observation, **action, "task": single_task}
|
||||||
dataset.add_frame(frame)
|
dataset.add_frame(frame)
|
||||||
|
|
||||||
if display_cameras and not is_headless():
|
if display_cameras and not is_headless():
|
||||||
|
@ -270,24 +275,18 @@ def control_loop(
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
def reset_environment(robot, events, reset_time_s):
|
def reset_environment(robot, events, reset_time_s, fps):
|
||||||
# TODO(rcadene): refactor warmup_record and reset_environment
|
# TODO(rcadene): refactor warmup_record and reset_environment
|
||||||
# TODO(alibets): allow for teleop during reset
|
|
||||||
if has_method(robot, "teleop_safety_stop"):
|
if has_method(robot, "teleop_safety_stop"):
|
||||||
robot.teleop_safety_stop()
|
robot.teleop_safety_stop()
|
||||||
|
|
||||||
timestamp = 0
|
control_loop(
|
||||||
start_vencod_t = time.perf_counter()
|
robot=robot,
|
||||||
|
control_time_s=reset_time_s,
|
||||||
# Wait if necessary
|
events=events,
|
||||||
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
|
fps=fps,
|
||||||
while timestamp < reset_time_s:
|
teleoperate=True,
|
||||||
time.sleep(1)
|
)
|
||||||
timestamp = time.perf_counter() - start_vencod_t
|
|
||||||
pbar.update(1)
|
|
||||||
if events["exit_early"]:
|
|
||||||
events["exit_early"] = False
|
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
def stop_recording(robot, listener, display_cameras):
|
def stop_recording(robot, listener, display_cameras):
|
||||||
|
|
|
@ -242,7 +242,7 @@ class DriveMode(enum.Enum):
|
||||||
class CalibrationMode(enum.Enum):
|
class CalibrationMode(enum.Enum):
|
||||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||||
DEGREE = 0
|
DEGREE = 0
|
||||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||||
LINEAR = 1
|
LINEAR = 1
|
||||||
|
|
||||||
|
|
||||||
|
@ -610,7 +610,7 @@ class DynamixelMotorsBus:
|
||||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||||
|
|
||||||
# Substract the homing offsets to come back to actual motor range of values
|
# Subtract the homing offsets to come back to actual motor range of values
|
||||||
# which can be arbitrary.
|
# which can be arbitrary.
|
||||||
values[i] -= homing_offset
|
values[i] -= homing_offset
|
||||||
|
|
||||||
|
|
|
@ -221,7 +221,7 @@ class DriveMode(enum.Enum):
|
||||||
class CalibrationMode(enum.Enum):
|
class CalibrationMode(enum.Enum):
|
||||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||||
DEGREE = 0
|
DEGREE = 0
|
||||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||||
LINEAR = 1
|
LINEAR = 1
|
||||||
|
|
||||||
|
|
||||||
|
@ -591,7 +591,7 @@ class FeetechMotorsBus:
|
||||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||||
|
|
||||||
# Substract the homing offsets to come back to actual motor range of values
|
# Subtract the homing offsets to come back to actual motor range of values
|
||||||
# which can be arbitrary.
|
# which can be arbitrary.
|
||||||
values[i] -= homing_offset
|
values[i] -= homing_offset
|
||||||
|
|
||||||
|
@ -632,7 +632,7 @@ class FeetechMotorsBus:
|
||||||
track["prev"][idx] = values[i]
|
track["prev"][idx] = values[i]
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Detect a full rotation occured
|
# Detect a full rotation occurred
|
||||||
if abs(track["prev"][idx] - values[i]) > 2048:
|
if abs(track["prev"][idx] - values[i]) > 2048:
|
||||||
# Position went below 0 and got reset to 4095
|
# Position went below 0 and got reset to 4095
|
||||||
if track["prev"][idx] < values[i]:
|
if track["prev"][idx] < values[i]:
|
||||||
|
|
|
@ -514,3 +514,86 @@ class StretchRobotConfig(RobotConfig):
|
||||||
)
|
)
|
||||||
|
|
||||||
mock: bool = False
|
mock: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
@RobotConfig.register_subclass("lekiwi")
|
||||||
|
@dataclass
|
||||||
|
class LeKiwiRobotConfig(RobotConfig):
|
||||||
|
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||||
|
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||||
|
# the number of motors in your follower arms.
|
||||||
|
max_relative_target: int | None = None
|
||||||
|
|
||||||
|
# Network Configuration
|
||||||
|
ip: str = "192.168.0.193"
|
||||||
|
port: int = 5555
|
||||||
|
video_port: int = 5556
|
||||||
|
|
||||||
|
cameras: dict[str, CameraConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"front": OpenCVCameraConfig(
|
||||||
|
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
|
||||||
|
),
|
||||||
|
"wrist": OpenCVCameraConfig(
|
||||||
|
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||||
|
|
||||||
|
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/tty.usbmodem585A0077581",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"main": FeetechMotorsBusConfig(
|
||||||
|
port="/dev/ttyACM0",
|
||||||
|
motors={
|
||||||
|
# name: (index, model)
|
||||||
|
"shoulder_pan": [1, "sts3215"],
|
||||||
|
"shoulder_lift": [2, "sts3215"],
|
||||||
|
"elbow_flex": [3, "sts3215"],
|
||||||
|
"wrist_flex": [4, "sts3215"],
|
||||||
|
"wrist_roll": [5, "sts3215"],
|
||||||
|
"gripper": [6, "sts3215"],
|
||||||
|
"left_wheel": (7, "sts3215"),
|
||||||
|
"back_wheel": (8, "sts3215"),
|
||||||
|
"right_wheel": (9, "sts3215"),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
teleop_keys: dict[str, str] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
# Movement
|
||||||
|
"forward": "w",
|
||||||
|
"backward": "s",
|
||||||
|
"left": "a",
|
||||||
|
"right": "d",
|
||||||
|
"rotate_left": "z",
|
||||||
|
"rotate_right": "x",
|
||||||
|
# Speed control
|
||||||
|
"speed_up": "r",
|
||||||
|
"speed_down": "f",
|
||||||
|
# quit teleop
|
||||||
|
"quit": "q",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
mock: bool = False
|
||||||
|
|
|
@ -87,7 +87,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||||
# of the previous motor in the kinetic chain.
|
# of the previous motor in the kinetic chain.
|
||||||
print("\nMove arm to rotated target position")
|
print("\nMove arm to rotated target position")
|
||||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||||
|
@ -115,7 +115,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||||
|
|
||||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||||
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
||||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||||
calib_idx = arm.motor_names.index("gripper")
|
calib_idx = arm.motor_names.index("gripper")
|
||||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||||
|
|
||||||
|
|
|
@ -443,7 +443,7 @@ def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, a
|
||||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||||
# of the previous motor in the kinetic chain.
|
# of the previous motor in the kinetic chain.
|
||||||
print("\nMove arm to rotated target position")
|
print("\nMove arm to rotated target position")
|
||||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||||
|
|
|
@ -0,0 +1,210 @@
|
||||||
|
import base64
|
||||||
|
import json
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import zmq
|
||||||
|
|
||||||
|
from lerobot.common.robot_devices.robots.mobile_manipulator import LeKiwi
|
||||||
|
|
||||||
|
|
||||||
|
def setup_zmq_sockets(config):
|
||||||
|
context = zmq.Context()
|
||||||
|
cmd_socket = context.socket(zmq.PULL)
|
||||||
|
cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||||
|
cmd_socket.bind(f"tcp://*:{config.port}")
|
||||||
|
|
||||||
|
video_socket = context.socket(zmq.PUSH)
|
||||||
|
video_socket.setsockopt(zmq.CONFLATE, 1)
|
||||||
|
video_socket.bind(f"tcp://*:{config.video_port}")
|
||||||
|
|
||||||
|
return context, cmd_socket, video_socket
|
||||||
|
|
||||||
|
|
||||||
|
def run_camera_capture(cameras, images_lock, latest_images_dict, stop_event):
|
||||||
|
while not stop_event.is_set():
|
||||||
|
local_dict = {}
|
||||||
|
for name, cam in cameras.items():
|
||||||
|
frame = cam.async_read()
|
||||||
|
ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
|
||||||
|
if ret:
|
||||||
|
local_dict[name] = base64.b64encode(buffer).decode("utf-8")
|
||||||
|
else:
|
||||||
|
local_dict[name] = ""
|
||||||
|
with images_lock:
|
||||||
|
latest_images_dict.update(local_dict)
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
|
|
||||||
|
def calibrate_follower_arm(motors_bus, calib_dir_str):
|
||||||
|
"""
|
||||||
|
Calibrates the follower arm. Attempts to load an existing calibration file;
|
||||||
|
if not found, runs manual calibration and saves the result.
|
||||||
|
"""
|
||||||
|
calib_dir = Path(calib_dir_str)
|
||||||
|
calib_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
calib_file = calib_dir / "main_follower.json"
|
||||||
|
try:
|
||||||
|
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||||
|
except ImportError:
|
||||||
|
print("[WARNING] Calibration function not available. Skipping calibration.")
|
||||||
|
return
|
||||||
|
|
||||||
|
if calib_file.exists():
|
||||||
|
with open(calib_file) as f:
|
||||||
|
calibration = json.load(f)
|
||||||
|
print(f"[INFO] Loaded calibration from {calib_file}")
|
||||||
|
else:
|
||||||
|
print("[INFO] Calibration file not found. Running manual calibration...")
|
||||||
|
calibration = run_arm_manual_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
|
||||||
|
print(f"[INFO] Calibration complete. Saving to {calib_file}")
|
||||||
|
with open(calib_file, "w") as f:
|
||||||
|
json.dump(calibration, f)
|
||||||
|
try:
|
||||||
|
motors_bus.set_calibration(calibration)
|
||||||
|
print("[INFO] Applied calibration for follower arm.")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[WARNING] Could not apply calibration: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def run_lekiwi(robot_config):
|
||||||
|
"""
|
||||||
|
Runs the LeKiwi robot:
|
||||||
|
- Sets up cameras and connects them.
|
||||||
|
- Initializes the follower arm motors.
|
||||||
|
- Calibrates the follower arm if necessary.
|
||||||
|
- Creates ZeroMQ sockets for receiving commands and streaming observations.
|
||||||
|
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
|
||||||
|
"""
|
||||||
|
# Import helper functions and classes
|
||||||
|
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||||
|
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus, TorqueMode
|
||||||
|
|
||||||
|
# Initialize cameras from the robot configuration.
|
||||||
|
cameras = make_cameras_from_configs(robot_config.cameras)
|
||||||
|
for cam in cameras.values():
|
||||||
|
cam.connect()
|
||||||
|
|
||||||
|
# Initialize the motors bus using the follower arm configuration.
|
||||||
|
motor_config = robot_config.follower_arms.get("main")
|
||||||
|
if motor_config is None:
|
||||||
|
print("[ERROR] Follower arm 'main' configuration not found.")
|
||||||
|
return
|
||||||
|
motors_bus = FeetechMotorsBus(motor_config)
|
||||||
|
motors_bus.connect()
|
||||||
|
|
||||||
|
# Calibrate the follower arm.
|
||||||
|
calibrate_follower_arm(motors_bus, robot_config.calibration_dir)
|
||||||
|
|
||||||
|
# Create the LeKiwi robot instance.
|
||||||
|
robot = LeKiwi(motors_bus)
|
||||||
|
|
||||||
|
# Define the expected arm motor IDs.
|
||||||
|
arm_motor_ids = ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"]
|
||||||
|
|
||||||
|
# Disable torque for each arm motor.
|
||||||
|
for motor in arm_motor_ids:
|
||||||
|
motors_bus.write("Torque_Enable", TorqueMode.DISABLED.value, motor)
|
||||||
|
|
||||||
|
# Set up ZeroMQ sockets.
|
||||||
|
context, cmd_socket, video_socket = setup_zmq_sockets(robot_config)
|
||||||
|
|
||||||
|
# Start the camera capture thread.
|
||||||
|
latest_images_dict = {}
|
||||||
|
images_lock = threading.Lock()
|
||||||
|
stop_event = threading.Event()
|
||||||
|
cam_thread = threading.Thread(
|
||||||
|
target=run_camera_capture, args=(cameras, images_lock, latest_images_dict, stop_event), daemon=True
|
||||||
|
)
|
||||||
|
cam_thread.start()
|
||||||
|
|
||||||
|
last_cmd_time = time.time()
|
||||||
|
print("LeKiwi robot server started. Waiting for commands...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
loop_start_time = time.time()
|
||||||
|
|
||||||
|
# Process incoming commands (non-blocking).
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
msg = cmd_socket.recv_string(zmq.NOBLOCK)
|
||||||
|
except zmq.Again:
|
||||||
|
break
|
||||||
|
try:
|
||||||
|
data = json.loads(msg)
|
||||||
|
# Process arm position commands.
|
||||||
|
if "arm_positions" in data:
|
||||||
|
arm_positions = data["arm_positions"]
|
||||||
|
if not isinstance(arm_positions, list):
|
||||||
|
print(f"[ERROR] Invalid arm_positions: {arm_positions}")
|
||||||
|
elif len(arm_positions) < len(arm_motor_ids):
|
||||||
|
print(
|
||||||
|
f"[WARNING] Received {len(arm_positions)} arm positions, expected {len(arm_motor_ids)}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
for motor, pos in zip(arm_motor_ids, arm_positions, strict=False):
|
||||||
|
motors_bus.write("Goal_Position", pos, motor)
|
||||||
|
# Process wheel (base) commands.
|
||||||
|
if "raw_velocity" in data:
|
||||||
|
raw_command = data["raw_velocity"]
|
||||||
|
# Expect keys: "left_wheel", "back_wheel", "right_wheel".
|
||||||
|
command_speeds = [
|
||||||
|
int(raw_command.get("left_wheel", 0)),
|
||||||
|
int(raw_command.get("back_wheel", 0)),
|
||||||
|
int(raw_command.get("right_wheel", 0)),
|
||||||
|
]
|
||||||
|
robot.set_velocity(command_speeds)
|
||||||
|
last_cmd_time = time.time()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[ERROR] Parsing message failed: {e}")
|
||||||
|
|
||||||
|
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
|
||||||
|
now = time.time()
|
||||||
|
if now - last_cmd_time > 0.5:
|
||||||
|
robot.stop()
|
||||||
|
last_cmd_time = now
|
||||||
|
|
||||||
|
# Read current wheel speeds from the robot.
|
||||||
|
current_velocity = robot.read_velocity()
|
||||||
|
|
||||||
|
# Read the follower arm state from the motors bus.
|
||||||
|
follower_arm_state = []
|
||||||
|
for motor in arm_motor_ids:
|
||||||
|
try:
|
||||||
|
pos = motors_bus.read("Present_Position", motor)
|
||||||
|
# Convert the position to a float (or use as is if already numeric).
|
||||||
|
follower_arm_state.append(float(pos) if not isinstance(pos, (int, float)) else pos)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[ERROR] Reading motor {motor} failed: {e}")
|
||||||
|
|
||||||
|
# Get the latest camera images.
|
||||||
|
with images_lock:
|
||||||
|
images_dict_copy = dict(latest_images_dict)
|
||||||
|
|
||||||
|
# Build the observation dictionary.
|
||||||
|
observation = {
|
||||||
|
"images": images_dict_copy,
|
||||||
|
"present_speed": current_velocity,
|
||||||
|
"follower_arm_state": follower_arm_state,
|
||||||
|
}
|
||||||
|
# Send the observation over the video socket.
|
||||||
|
video_socket.send_string(json.dumps(observation))
|
||||||
|
|
||||||
|
# Ensure a short sleep to avoid overloading the CPU.
|
||||||
|
elapsed = time.time() - loop_start_time
|
||||||
|
time.sleep(
|
||||||
|
max(0.033 - elapsed, 0)
|
||||||
|
) # If robot jitters increase the sleep and monitor cpu load with `top` in cmd
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("Shutting down LeKiwi server.")
|
||||||
|
finally:
|
||||||
|
stop_event.set()
|
||||||
|
cam_thread.join()
|
||||||
|
robot.stop()
|
||||||
|
motors_bus.disconnect()
|
||||||
|
cmd_socket.close()
|
||||||
|
video_socket.close()
|
||||||
|
context.term()
|
|
@ -44,7 +44,7 @@ class ManipulatorRobot:
|
||||||
# TODO(rcadene): Implement force feedback
|
# TODO(rcadene): Implement force feedback
|
||||||
"""This class allows to control any manipulator robot of various number of motors.
|
"""This class allows to control any manipulator robot of various number of motors.
|
||||||
|
|
||||||
Non exaustive list of robots:
|
Non exhaustive list of robots:
|
||||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
|
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
|
||||||
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||||
|
@ -55,7 +55,7 @@ class ManipulatorRobot:
|
||||||
robot = ManipulatorRobot(KochRobotConfig())
|
robot = ManipulatorRobot(KochRobotConfig())
|
||||||
```
|
```
|
||||||
|
|
||||||
Example of overwritting motors during instantiation:
|
Example of overwriting motors during instantiation:
|
||||||
```python
|
```python
|
||||||
# Defines how to communicate with the motors of the leader and follower arms
|
# Defines how to communicate with the motors of the leader and follower arms
|
||||||
leader_arms = {
|
leader_arms = {
|
||||||
|
@ -90,7 +90,7 @@ class ManipulatorRobot:
|
||||||
robot = ManipulatorRobot(robot_config)
|
robot = ManipulatorRobot(robot_config)
|
||||||
```
|
```
|
||||||
|
|
||||||
Example of overwritting cameras during instantiation:
|
Example of overwriting cameras during instantiation:
|
||||||
```python
|
```python
|
||||||
# Defines how to communicate with 2 cameras connected to the computer.
|
# Defines how to communicate with 2 cameras connected to the computer.
|
||||||
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
|
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
|
||||||
|
@ -229,7 +229,7 @@ class ManipulatorRobot:
|
||||||
|
|
||||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||||
elif self.robot_type in ["so100", "moss"]:
|
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||||
|
|
||||||
# We assume that at connection time, arms are in a rest position, and torque can
|
# We assume that at connection time, arms are in a rest position, and torque can
|
||||||
|
@ -246,7 +246,7 @@ class ManipulatorRobot:
|
||||||
self.set_koch_robot_preset()
|
self.set_koch_robot_preset()
|
||||||
elif self.robot_type == "aloha":
|
elif self.robot_type == "aloha":
|
||||||
self.set_aloha_robot_preset()
|
self.set_aloha_robot_preset()
|
||||||
elif self.robot_type in ["so100", "moss"]:
|
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||||
self.set_so100_robot_preset()
|
self.set_so100_robot_preset()
|
||||||
|
|
||||||
# Enable torque on all motors of the follower arms
|
# Enable torque on all motors of the follower arms
|
||||||
|
@ -299,7 +299,7 @@ class ManipulatorRobot:
|
||||||
|
|
||||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||||
|
|
||||||
elif self.robot_type in ["so100", "moss"]:
|
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||||
from lerobot.common.robot_devices.robots.feetech_calibration import (
|
from lerobot.common.robot_devices.robots.feetech_calibration import (
|
||||||
run_arm_manual_calibration,
|
run_arm_manual_calibration,
|
||||||
)
|
)
|
||||||
|
@ -348,7 +348,7 @@ class ManipulatorRobot:
|
||||||
set_operating_mode_(self.follower_arms[name])
|
set_operating_mode_(self.follower_arms[name])
|
||||||
|
|
||||||
# Set better PID values to close the gap between recorded states and actions
|
# Set better PID values to close the gap between recorded states and actions
|
||||||
# TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor
|
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
|
||||||
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
|
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
|
||||||
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
|
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
|
||||||
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
|
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
|
||||||
|
@ -500,7 +500,7 @@ class ManipulatorRobot:
|
||||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||||
|
|
||||||
# Populate output dictionnaries
|
# Populate output dictionaries
|
||||||
obs_dict, action_dict = {}, {}
|
obs_dict, action_dict = {}, {}
|
||||||
obs_dict["observation.state"] = state
|
obs_dict["observation.state"] = state
|
||||||
action_dict["action"] = action
|
action_dict["action"] = action
|
||||||
|
@ -540,7 +540,7 @@ class ManipulatorRobot:
|
||||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||||
|
|
||||||
# Populate output dictionnaries and format to pytorch
|
# Populate output dictionaries and format to pytorch
|
||||||
obs_dict = {}
|
obs_dict = {}
|
||||||
obs_dict["observation.state"] = state
|
obs_dict["observation.state"] = state
|
||||||
for name in self.cameras:
|
for name in self.cameras:
|
||||||
|
|
|
@ -0,0 +1,689 @@
|
||||||
|
import base64
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import zmq
|
||||||
|
|
||||||
|
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||||
|
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||||
|
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
|
||||||
|
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
|
||||||
|
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||||
|
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||||
|
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
|
||||||
|
|
||||||
|
PYNPUT_AVAILABLE = True
|
||||||
|
try:
|
||||||
|
# Only import if there's a valid X server or if we're not on a Pi
|
||||||
|
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
|
||||||
|
print("No DISPLAY set. Skipping pynput import.")
|
||||||
|
raise ImportError("pynput blocked intentionally due to no display.")
|
||||||
|
|
||||||
|
from pynput import keyboard
|
||||||
|
except ImportError:
|
||||||
|
keyboard = None
|
||||||
|
PYNPUT_AVAILABLE = False
|
||||||
|
except Exception as e:
|
||||||
|
keyboard = None
|
||||||
|
PYNPUT_AVAILABLE = False
|
||||||
|
print(f"Could not import pynput: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
class MobileManipulator:
|
||||||
|
"""
|
||||||
|
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
|
||||||
|
The robot includes a three omniwheel mobile base and a remote follower arm.
|
||||||
|
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
|
||||||
|
forwarded to the remote follower arm (after applying a safety clamp).
|
||||||
|
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: LeKiwiRobotConfig):
|
||||||
|
"""
|
||||||
|
Expected keys in config:
|
||||||
|
- ip, port, video_port for the remote connection.
|
||||||
|
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
|
||||||
|
"""
|
||||||
|
self.robot_type = config.type
|
||||||
|
self.config = config
|
||||||
|
self.remote_ip = config.ip
|
||||||
|
self.remote_port = config.port
|
||||||
|
self.remote_port_video = config.video_port
|
||||||
|
self.calibration_dir = Path(self.config.calibration_dir)
|
||||||
|
self.logs = {}
|
||||||
|
|
||||||
|
self.teleop_keys = self.config.teleop_keys
|
||||||
|
|
||||||
|
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
|
||||||
|
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
|
||||||
|
|
||||||
|
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
|
||||||
|
|
||||||
|
self.cameras = make_cameras_from_configs(self.config.cameras)
|
||||||
|
|
||||||
|
self.is_connected = False
|
||||||
|
|
||||||
|
self.last_frames = {}
|
||||||
|
self.last_present_speed = {}
|
||||||
|
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
|
||||||
|
|
||||||
|
# Define three speed levels and a current index
|
||||||
|
self.speed_levels = [
|
||||||
|
{"xy": 0.1, "theta": 30}, # slow
|
||||||
|
{"xy": 0.2, "theta": 60}, # medium
|
||||||
|
{"xy": 0.3, "theta": 90}, # fast
|
||||||
|
]
|
||||||
|
self.speed_index = 0 # Start at slow
|
||||||
|
|
||||||
|
# ZeroMQ context and sockets.
|
||||||
|
self.context = None
|
||||||
|
self.cmd_socket = None
|
||||||
|
self.video_socket = None
|
||||||
|
|
||||||
|
# Keyboard state for base teleoperation.
|
||||||
|
self.running = True
|
||||||
|
self.pressed_keys = {
|
||||||
|
"forward": False,
|
||||||
|
"backward": False,
|
||||||
|
"left": False,
|
||||||
|
"right": False,
|
||||||
|
"rotate_left": False,
|
||||||
|
"rotate_right": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
if PYNPUT_AVAILABLE:
|
||||||
|
print("pynput is available - enabling local keyboard listener.")
|
||||||
|
self.listener = keyboard.Listener(
|
||||||
|
on_press=self.on_press,
|
||||||
|
on_release=self.on_release,
|
||||||
|
)
|
||||||
|
self.listener.start()
|
||||||
|
else:
|
||||||
|
print("pynput not available - skipping local keyboard listener.")
|
||||||
|
self.listener = None
|
||||||
|
|
||||||
|
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
|
||||||
|
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def camera_features(self) -> dict:
|
||||||
|
cam_ft = {}
|
||||||
|
for cam_key, cam in self.cameras.items():
|
||||||
|
key = f"observation.images.{cam_key}"
|
||||||
|
cam_ft[key] = {
|
||||||
|
"shape": (cam.height, cam.width, cam.channels),
|
||||||
|
"names": ["height", "width", "channels"],
|
||||||
|
"info": None,
|
||||||
|
}
|
||||||
|
return cam_ft
|
||||||
|
|
||||||
|
@property
|
||||||
|
def motor_features(self) -> dict:
|
||||||
|
follower_arm_names = [
|
||||||
|
"shoulder_pan",
|
||||||
|
"shoulder_lift",
|
||||||
|
"elbow_flex",
|
||||||
|
"wrist_flex",
|
||||||
|
"wrist_roll",
|
||||||
|
"gripper",
|
||||||
|
]
|
||||||
|
observations = ["x_mm", "y_mm", "theta"]
|
||||||
|
combined_names = follower_arm_names + observations
|
||||||
|
return {
|
||||||
|
"action": {
|
||||||
|
"dtype": "float32",
|
||||||
|
"shape": (len(combined_names),),
|
||||||
|
"names": combined_names,
|
||||||
|
},
|
||||||
|
"observation.state": {
|
||||||
|
"dtype": "float32",
|
||||||
|
"shape": (len(combined_names),),
|
||||||
|
"names": combined_names,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def features(self):
|
||||||
|
return {**self.motor_features, **self.camera_features}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def has_camera(self):
|
||||||
|
return len(self.cameras) > 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_cameras(self):
|
||||||
|
return len(self.cameras)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def available_arms(self):
|
||||||
|
available = []
|
||||||
|
for name in self.leader_arms:
|
||||||
|
available.append(get_arm_id(name, "leader"))
|
||||||
|
for name in self.follower_arms:
|
||||||
|
available.append(get_arm_id(name, "follower"))
|
||||||
|
return available
|
||||||
|
|
||||||
|
def on_press(self, key):
|
||||||
|
try:
|
||||||
|
# Movement
|
||||||
|
if key.char == self.teleop_keys["forward"]:
|
||||||
|
self.pressed_keys["forward"] = True
|
||||||
|
elif key.char == self.teleop_keys["backward"]:
|
||||||
|
self.pressed_keys["backward"] = True
|
||||||
|
elif key.char == self.teleop_keys["left"]:
|
||||||
|
self.pressed_keys["left"] = True
|
||||||
|
elif key.char == self.teleop_keys["right"]:
|
||||||
|
self.pressed_keys["right"] = True
|
||||||
|
elif key.char == self.teleop_keys["rotate_left"]:
|
||||||
|
self.pressed_keys["rotate_left"] = True
|
||||||
|
elif key.char == self.teleop_keys["rotate_right"]:
|
||||||
|
self.pressed_keys["rotate_right"] = True
|
||||||
|
|
||||||
|
# Quit teleoperation
|
||||||
|
elif key.char == self.teleop_keys["quit"]:
|
||||||
|
self.running = False
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Speed control
|
||||||
|
elif key.char == self.teleop_keys["speed_up"]:
|
||||||
|
self.speed_index = min(self.speed_index + 1, 2)
|
||||||
|
print(f"Speed index increased to {self.speed_index}")
|
||||||
|
elif key.char == self.teleop_keys["speed_down"]:
|
||||||
|
self.speed_index = max(self.speed_index - 1, 0)
|
||||||
|
print(f"Speed index decreased to {self.speed_index}")
|
||||||
|
|
||||||
|
except AttributeError:
|
||||||
|
# e.g., if key is special like Key.esc
|
||||||
|
if key == keyboard.Key.esc:
|
||||||
|
self.running = False
|
||||||
|
return False
|
||||||
|
|
||||||
|
def on_release(self, key):
|
||||||
|
try:
|
||||||
|
if hasattr(key, "char"):
|
||||||
|
if key.char == self.teleop_keys["forward"]:
|
||||||
|
self.pressed_keys["forward"] = False
|
||||||
|
elif key.char == self.teleop_keys["backward"]:
|
||||||
|
self.pressed_keys["backward"] = False
|
||||||
|
elif key.char == self.teleop_keys["left"]:
|
||||||
|
self.pressed_keys["left"] = False
|
||||||
|
elif key.char == self.teleop_keys["right"]:
|
||||||
|
self.pressed_keys["right"] = False
|
||||||
|
elif key.char == self.teleop_keys["rotate_left"]:
|
||||||
|
self.pressed_keys["rotate_left"] = False
|
||||||
|
elif key.char == self.teleop_keys["rotate_right"]:
|
||||||
|
self.pressed_keys["rotate_right"] = False
|
||||||
|
except AttributeError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def connect(self):
|
||||||
|
if not self.leader_arms:
|
||||||
|
raise ValueError("MobileManipulator has no leader arm to connect.")
|
||||||
|
for name in self.leader_arms:
|
||||||
|
print(f"Connecting {name} leader arm.")
|
||||||
|
self.calibrate_leader()
|
||||||
|
|
||||||
|
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
|
||||||
|
self.context = zmq.Context()
|
||||||
|
self.cmd_socket = self.context.socket(zmq.PUSH)
|
||||||
|
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
|
||||||
|
self.cmd_socket.connect(connection_string)
|
||||||
|
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||||
|
self.video_socket = self.context.socket(zmq.PULL)
|
||||||
|
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
|
||||||
|
self.video_socket.connect(video_connection)
|
||||||
|
self.video_socket.setsockopt(zmq.CONFLATE, 1)
|
||||||
|
print(
|
||||||
|
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
|
||||||
|
)
|
||||||
|
self.is_connected = True
|
||||||
|
|
||||||
|
def load_or_run_calibration_(self, name, arm, arm_type):
|
||||||
|
arm_id = get_arm_id(name, arm_type)
|
||||||
|
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||||
|
|
||||||
|
if arm_calib_path.exists():
|
||||||
|
with open(arm_calib_path) as f:
|
||||||
|
calibration = json.load(f)
|
||||||
|
else:
|
||||||
|
print(f"Missing calibration file '{arm_calib_path}'")
|
||||||
|
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||||
|
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||||
|
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
with open(arm_calib_path, "w") as f:
|
||||||
|
json.dump(calibration, f)
|
||||||
|
|
||||||
|
return calibration
|
||||||
|
|
||||||
|
def calibrate_leader(self):
|
||||||
|
for name, arm in self.leader_arms.items():
|
||||||
|
# Connect the bus
|
||||||
|
arm.connect()
|
||||||
|
|
||||||
|
# Disable torque on all motors
|
||||||
|
for motor_id in arm.motors:
|
||||||
|
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
|
||||||
|
|
||||||
|
# Now run calibration
|
||||||
|
calibration = self.load_or_run_calibration_(name, arm, "leader")
|
||||||
|
arm.set_calibration(calibration)
|
||||||
|
|
||||||
|
def calibrate_follower(self):
|
||||||
|
for name, bus in self.follower_arms.items():
|
||||||
|
bus.connect()
|
||||||
|
|
||||||
|
# Disable torque on all motors
|
||||||
|
for motor_id in bus.motors:
|
||||||
|
bus.write("Torque_Enable", 0, motor_id)
|
||||||
|
|
||||||
|
# Then filter out wheels
|
||||||
|
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
|
||||||
|
if not arm_only_dict:
|
||||||
|
continue
|
||||||
|
|
||||||
|
original_motors = bus.motors
|
||||||
|
bus.motors = arm_only_dict
|
||||||
|
|
||||||
|
calibration = self.load_or_run_calibration_(name, bus, "follower")
|
||||||
|
bus.set_calibration(calibration)
|
||||||
|
|
||||||
|
bus.motors = original_motors
|
||||||
|
|
||||||
|
def _get_data(self):
|
||||||
|
"""
|
||||||
|
Polls the video socket for up to 15 ms. If data arrives, decode only
|
||||||
|
the *latest* message, returning frames, speed, and arm state. If
|
||||||
|
nothing arrives for any field, use the last known values.
|
||||||
|
"""
|
||||||
|
frames = {}
|
||||||
|
present_speed = {}
|
||||||
|
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
|
||||||
|
|
||||||
|
# Poll up to 15 ms
|
||||||
|
poller = zmq.Poller()
|
||||||
|
poller.register(self.video_socket, zmq.POLLIN)
|
||||||
|
socks = dict(poller.poll(15))
|
||||||
|
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
|
||||||
|
# No new data arrived → reuse ALL old data
|
||||||
|
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||||
|
|
||||||
|
# Drain all messages, keep only the last
|
||||||
|
last_msg = None
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
|
||||||
|
last_msg = obs_string
|
||||||
|
except zmq.Again:
|
||||||
|
break
|
||||||
|
|
||||||
|
if not last_msg:
|
||||||
|
# No new message → also reuse old
|
||||||
|
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||||
|
|
||||||
|
# Decode only the final message
|
||||||
|
try:
|
||||||
|
observation = json.loads(last_msg)
|
||||||
|
|
||||||
|
images_dict = observation.get("images", {})
|
||||||
|
new_speed = observation.get("present_speed", {})
|
||||||
|
new_arm_state = observation.get("follower_arm_state", None)
|
||||||
|
|
||||||
|
# Convert images
|
||||||
|
for cam_name, image_b64 in images_dict.items():
|
||||||
|
if image_b64:
|
||||||
|
jpg_data = base64.b64decode(image_b64)
|
||||||
|
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
|
||||||
|
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
||||||
|
if frame_candidate is not None:
|
||||||
|
frames[cam_name] = frame_candidate
|
||||||
|
|
||||||
|
# If remote_arm_state is None and frames is None there is no message then use the previous message
|
||||||
|
if new_arm_state is not None and frames is not None:
|
||||||
|
self.last_frames = frames
|
||||||
|
|
||||||
|
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
|
||||||
|
self.last_remote_arm_state = remote_arm_state_tensor
|
||||||
|
|
||||||
|
present_speed = new_speed
|
||||||
|
self.last_present_speed = new_speed
|
||||||
|
else:
|
||||||
|
frames = self.last_frames
|
||||||
|
|
||||||
|
remote_arm_state_tensor = self.last_remote_arm_state
|
||||||
|
|
||||||
|
present_speed = self.last_present_speed
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[DEBUG] Error decoding video message: {e}")
|
||||||
|
# If decode fails, fall back to old data
|
||||||
|
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||||
|
|
||||||
|
return frames, present_speed, remote_arm_state_tensor
|
||||||
|
|
||||||
|
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
|
||||||
|
state_tensor = torch.zeros(3, dtype=torch.int32)
|
||||||
|
if present_speed:
|
||||||
|
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
|
||||||
|
if "1" in decoded:
|
||||||
|
state_tensor[0] = decoded["1"]
|
||||||
|
if "2" in decoded:
|
||||||
|
state_tensor[1] = decoded["2"]
|
||||||
|
if "3" in decoded:
|
||||||
|
state_tensor[2] = decoded["3"]
|
||||||
|
return state_tensor
|
||||||
|
|
||||||
|
def teleop_step(
|
||||||
|
self, record_data: bool = False
|
||||||
|
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||||
|
if not self.is_connected:
|
||||||
|
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
|
||||||
|
|
||||||
|
speed_setting = self.speed_levels[self.speed_index]
|
||||||
|
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
|
||||||
|
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
|
||||||
|
|
||||||
|
# Prepare to assign the position of the leader to the follower
|
||||||
|
arm_positions = []
|
||||||
|
for name in self.leader_arms:
|
||||||
|
pos = self.leader_arms[name].read("Present_Position")
|
||||||
|
pos_tensor = torch.from_numpy(pos).float()
|
||||||
|
arm_positions.extend(pos_tensor.tolist())
|
||||||
|
|
||||||
|
y_cmd = 0.0 # m/s forward/backward
|
||||||
|
x_cmd = 0.0 # m/s lateral
|
||||||
|
theta_cmd = 0.0 # deg/s rotation
|
||||||
|
if self.pressed_keys["forward"]:
|
||||||
|
y_cmd += xy_speed
|
||||||
|
if self.pressed_keys["backward"]:
|
||||||
|
y_cmd -= xy_speed
|
||||||
|
if self.pressed_keys["left"]:
|
||||||
|
x_cmd += xy_speed
|
||||||
|
if self.pressed_keys["right"]:
|
||||||
|
x_cmd -= xy_speed
|
||||||
|
if self.pressed_keys["rotate_left"]:
|
||||||
|
theta_cmd += theta_speed
|
||||||
|
if self.pressed_keys["rotate_right"]:
|
||||||
|
theta_cmd -= theta_speed
|
||||||
|
|
||||||
|
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||||
|
|
||||||
|
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
|
||||||
|
self.cmd_socket.send_string(json.dumps(message))
|
||||||
|
|
||||||
|
if not record_data:
|
||||||
|
return
|
||||||
|
|
||||||
|
obs_dict = self.capture_observation()
|
||||||
|
|
||||||
|
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
|
||||||
|
|
||||||
|
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
|
||||||
|
wheel_velocity_mm = (
|
||||||
|
wheel_velocity_tuple[0] * 1000.0,
|
||||||
|
wheel_velocity_tuple[1] * 1000.0,
|
||||||
|
wheel_velocity_tuple[2],
|
||||||
|
)
|
||||||
|
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
|
||||||
|
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
|
||||||
|
action_dict = {"action": action_tensor}
|
||||||
|
|
||||||
|
return obs_dict, action_dict
|
||||||
|
|
||||||
|
def capture_observation(self) -> dict:
|
||||||
|
"""
|
||||||
|
Capture observations from the remote robot: current follower arm positions,
|
||||||
|
present wheel speeds (converted to body-frame velocities: x, y, theta),
|
||||||
|
and a camera frame.
|
||||||
|
"""
|
||||||
|
if not self.is_connected:
|
||||||
|
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||||
|
|
||||||
|
frames, present_speed, remote_arm_state_tensor = self._get_data()
|
||||||
|
|
||||||
|
body_state = self.wheel_raw_to_body(present_speed)
|
||||||
|
|
||||||
|
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
|
||||||
|
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
|
||||||
|
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
|
||||||
|
|
||||||
|
obs_dict = {"observation.state": combined_state_tensor}
|
||||||
|
|
||||||
|
# Loop over each configured camera
|
||||||
|
for cam_name, cam in self.cameras.items():
|
||||||
|
frame = frames.get(cam_name, None)
|
||||||
|
if frame is None:
|
||||||
|
# Create a black image using the camera's configured width, height, and channels
|
||||||
|
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
|
||||||
|
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
|
||||||
|
|
||||||
|
return obs_dict
|
||||||
|
|
||||||
|
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||||
|
if not self.is_connected:
|
||||||
|
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||||
|
|
||||||
|
# Ensure the action tensor has at least 9 elements:
|
||||||
|
# - First 6: arm positions.
|
||||||
|
# - Last 3: base commands.
|
||||||
|
if action.numel() < 9:
|
||||||
|
# Pad with zeros if there are not enough elements.
|
||||||
|
padded = torch.zeros(9, dtype=action.dtype)
|
||||||
|
padded[: action.numel()] = action
|
||||||
|
action = padded
|
||||||
|
|
||||||
|
# Extract arm and base actions.
|
||||||
|
arm_actions = action[:6].flatten()
|
||||||
|
base_actions = action[6:].flatten()
|
||||||
|
|
||||||
|
x_cmd_mm = base_actions[0].item() # mm/s
|
||||||
|
y_cmd_mm = base_actions[1].item() # mm/s
|
||||||
|
theta_cmd = base_actions[2].item() # deg/s
|
||||||
|
|
||||||
|
# Convert mm/s to m/s for the kinematics calculations.
|
||||||
|
x_cmd = x_cmd_mm / 1000.0 # m/s
|
||||||
|
y_cmd = y_cmd_mm / 1000.0 # m/s
|
||||||
|
|
||||||
|
# Compute wheel commands from body commands.
|
||||||
|
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||||
|
|
||||||
|
arm_positions_list = arm_actions.tolist()
|
||||||
|
|
||||||
|
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
|
||||||
|
self.cmd_socket.send_string(json.dumps(message))
|
||||||
|
|
||||||
|
return action
|
||||||
|
|
||||||
|
def print_logs(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def disconnect(self):
|
||||||
|
if not self.is_connected:
|
||||||
|
raise RobotDeviceNotConnectedError("Not connected.")
|
||||||
|
if self.cmd_socket:
|
||||||
|
stop_cmd = {
|
||||||
|
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
|
||||||
|
"arm_positions": {},
|
||||||
|
}
|
||||||
|
self.cmd_socket.send_string(json.dumps(stop_cmd))
|
||||||
|
self.cmd_socket.close()
|
||||||
|
if self.video_socket:
|
||||||
|
self.video_socket.close()
|
||||||
|
if self.context:
|
||||||
|
self.context.term()
|
||||||
|
if PYNPUT_AVAILABLE:
|
||||||
|
self.listener.stop()
|
||||||
|
self.is_connected = False
|
||||||
|
print("[INFO] Disconnected from remote robot.")
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
if getattr(self, "is_connected", False):
|
||||||
|
self.disconnect()
|
||||||
|
if PYNPUT_AVAILABLE:
|
||||||
|
self.listener.stop()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def degps_to_raw(degps: float) -> int:
|
||||||
|
steps_per_deg = 4096.0 / 360.0
|
||||||
|
speed_in_steps = abs(degps) * steps_per_deg
|
||||||
|
speed_int = int(round(speed_in_steps))
|
||||||
|
if speed_int > 0x7FFF:
|
||||||
|
speed_int = 0x7FFF
|
||||||
|
if degps < 0:
|
||||||
|
return speed_int | 0x8000
|
||||||
|
else:
|
||||||
|
return speed_int & 0x7FFF
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def raw_to_degps(raw_speed: int) -> float:
|
||||||
|
steps_per_deg = 4096.0 / 360.0
|
||||||
|
magnitude = raw_speed & 0x7FFF
|
||||||
|
degps = magnitude / steps_per_deg
|
||||||
|
if raw_speed & 0x8000:
|
||||||
|
degps = -degps
|
||||||
|
return degps
|
||||||
|
|
||||||
|
def body_to_wheel_raw(
|
||||||
|
self,
|
||||||
|
x_cmd: float,
|
||||||
|
y_cmd: float,
|
||||||
|
theta_cmd: float,
|
||||||
|
wheel_radius: float = 0.05,
|
||||||
|
base_radius: float = 0.125,
|
||||||
|
max_raw: int = 3000,
|
||||||
|
) -> dict:
|
||||||
|
"""
|
||||||
|
Convert desired body-frame velocities into wheel raw commands.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
x_cmd : Linear velocity in x (m/s).
|
||||||
|
y_cmd : Linear velocity in y (m/s).
|
||||||
|
theta_cmd : Rotational velocity (deg/s).
|
||||||
|
wheel_radius: Radius of each wheel (meters).
|
||||||
|
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||||
|
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dictionary with wheel raw commands:
|
||||||
|
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||||
|
- The raw command is computed from the wheels angular speed in deg/s
|
||||||
|
using degps_to_raw(). If any command exceeds max_raw, all commands
|
||||||
|
are scaled down proportionally.
|
||||||
|
"""
|
||||||
|
# Convert rotational velocity from deg/s to rad/s.
|
||||||
|
theta_rad = theta_cmd * (np.pi / 180.0)
|
||||||
|
# Create the body velocity vector [x, y, theta_rad].
|
||||||
|
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||||
|
|
||||||
|
# Define the wheel mounting angles (defined from y axis cw)
|
||||||
|
angles = np.radians(np.array([300, 180, 60]))
|
||||||
|
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||||
|
# The third column (base_radius) accounts for the effect of rotation.
|
||||||
|
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||||
|
|
||||||
|
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||||
|
wheel_linear_speeds = m.dot(velocity_vector)
|
||||||
|
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||||
|
|
||||||
|
# Convert wheel angular speeds from rad/s to deg/s.
|
||||||
|
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||||
|
|
||||||
|
# Scaling
|
||||||
|
steps_per_deg = 4096.0 / 360.0
|
||||||
|
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||||
|
max_raw_computed = max(raw_floats)
|
||||||
|
if max_raw_computed > max_raw:
|
||||||
|
scale = max_raw / max_raw_computed
|
||||||
|
wheel_degps = wheel_degps * scale
|
||||||
|
|
||||||
|
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||||
|
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
|
||||||
|
|
||||||
|
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
|
||||||
|
|
||||||
|
def wheel_raw_to_body(
|
||||||
|
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
|
||||||
|
) -> tuple:
|
||||||
|
"""
|
||||||
|
Convert wheel raw command feedback back into body-frame velocities.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
|
||||||
|
wheel_radius: Radius of each wheel (meters).
|
||||||
|
base_radius : Distance from the robot center to each wheel (meters).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (x_cmd, y_cmd, theta_cmd) where:
|
||||||
|
x_cmd : Linear velocity in x (m/s).
|
||||||
|
y_cmd : Linear velocity in y (m/s).
|
||||||
|
theta_cmd : Rotational velocity in deg/s.
|
||||||
|
"""
|
||||||
|
# Extract the raw values in order.
|
||||||
|
raw_list = [
|
||||||
|
int(wheel_raw.get("left_wheel", 0)),
|
||||||
|
int(wheel_raw.get("back_wheel", 0)),
|
||||||
|
int(wheel_raw.get("right_wheel", 0)),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Convert each raw command back to an angular speed in deg/s.
|
||||||
|
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
|
||||||
|
# Convert from deg/s to rad/s.
|
||||||
|
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||||
|
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||||
|
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||||
|
|
||||||
|
# Define the wheel mounting angles (defined from y axis cw)
|
||||||
|
angles = np.radians(np.array([300, 180, 60]))
|
||||||
|
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||||
|
|
||||||
|
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||||
|
m_inv = np.linalg.inv(m)
|
||||||
|
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||||
|
x_cmd, y_cmd, theta_rad = velocity_vector
|
||||||
|
theta_cmd = theta_rad * (180.0 / np.pi)
|
||||||
|
return (x_cmd, y_cmd, theta_cmd)
|
||||||
|
|
||||||
|
|
||||||
|
class LeKiwi:
|
||||||
|
def __init__(self, motor_bus):
|
||||||
|
"""
|
||||||
|
Initializes the LeKiwi with Feetech motors bus.
|
||||||
|
"""
|
||||||
|
self.motor_bus = motor_bus
|
||||||
|
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
|
||||||
|
|
||||||
|
# Initialize motors in velocity mode.
|
||||||
|
self.motor_bus.write("Lock", 0)
|
||||||
|
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
|
||||||
|
self.motor_bus.write("Lock", 1)
|
||||||
|
print("Motors set to velocity mode.")
|
||||||
|
|
||||||
|
def read_velocity(self):
|
||||||
|
"""
|
||||||
|
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
|
||||||
|
"""
|
||||||
|
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
|
||||||
|
return {
|
||||||
|
"left_wheel": int(raw_speeds[0]),
|
||||||
|
"back_wheel": int(raw_speeds[1]),
|
||||||
|
"right_wheel": int(raw_speeds[2]),
|
||||||
|
}
|
||||||
|
|
||||||
|
def set_velocity(self, command_speeds):
|
||||||
|
"""
|
||||||
|
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
|
||||||
|
The order of speeds must correspond to self.motor_ids.
|
||||||
|
"""
|
||||||
|
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
"""Stops the robot by setting all motor speeds to zero."""
|
||||||
|
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
|
||||||
|
print("Motors stopped.")
|
|
@ -108,7 +108,7 @@ class StretchRobot(StretchAPI):
|
||||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||||
|
|
||||||
# Populate output dictionnaries
|
# Populate output dictionaries
|
||||||
obs_dict, action_dict = {}, {}
|
obs_dict, action_dict = {}, {}
|
||||||
obs_dict["observation.state"] = state
|
obs_dict["observation.state"] = state
|
||||||
action_dict["action"] = action
|
action_dict["action"] = action
|
||||||
|
@ -153,7 +153,7 @@ class StretchRobot(StretchAPI):
|
||||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||||
|
|
||||||
# Populate output dictionnaries
|
# Populate output dictionaries
|
||||||
obs_dict = {}
|
obs_dict = {}
|
||||||
obs_dict["observation.state"] = state
|
obs_dict["observation.state"] = state
|
||||||
for name in self.cameras:
|
for name in self.cameras:
|
||||||
|
|
|
@ -4,6 +4,7 @@ from lerobot.common.robot_devices.robots.configs import (
|
||||||
AlohaRobotConfig,
|
AlohaRobotConfig,
|
||||||
KochBimanualRobotConfig,
|
KochBimanualRobotConfig,
|
||||||
KochRobotConfig,
|
KochRobotConfig,
|
||||||
|
LeKiwiRobotConfig,
|
||||||
ManipulatorRobotConfig,
|
ManipulatorRobotConfig,
|
||||||
MossRobotConfig,
|
MossRobotConfig,
|
||||||
RobotConfig,
|
RobotConfig,
|
||||||
|
@ -45,6 +46,8 @@ def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||||
return So100RobotConfig(**kwargs)
|
return So100RobotConfig(**kwargs)
|
||||||
elif robot_type == "stretch":
|
elif robot_type == "stretch":
|
||||||
return StretchRobotConfig(**kwargs)
|
return StretchRobotConfig(**kwargs)
|
||||||
|
elif robot_type == "lekiwi":
|
||||||
|
return LeKiwiRobotConfig(**kwargs)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
||||||
|
|
||||||
|
@ -54,6 +57,10 @@ def make_robot_from_config(config: RobotConfig):
|
||||||
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
|
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
|
||||||
|
|
||||||
return ManipulatorRobot(config)
|
return ManipulatorRobot(config)
|
||||||
|
elif isinstance(config, LeKiwiRobotConfig):
|
||||||
|
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
|
||||||
|
|
||||||
|
return MobileManipulator(config)
|
||||||
else:
|
else:
|
||||||
from lerobot.common.robot_devices.robots.stretch import StretchRobot
|
from lerobot.common.robot_devices.robots.stretch import StretchRobot
|
||||||
|
|
||||||
|
|
|
@ -17,10 +17,12 @@ import logging
|
||||||
import os
|
import os
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
import platform
|
import platform
|
||||||
|
import subprocess
|
||||||
from copy import copy
|
from copy import copy
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
@ -164,23 +166,31 @@ def capture_timestamp_utc():
|
||||||
|
|
||||||
|
|
||||||
def say(text, blocking=False):
|
def say(text, blocking=False):
|
||||||
# Check if mac, linux, or windows.
|
system = platform.system()
|
||||||
if platform.system() == "Darwin":
|
|
||||||
cmd = f'say "{text}"'
|
|
||||||
if not blocking:
|
|
||||||
cmd += " &"
|
|
||||||
elif platform.system() == "Linux":
|
|
||||||
cmd = f'spd-say "{text}"'
|
|
||||||
if blocking:
|
|
||||||
cmd += " --wait"
|
|
||||||
elif platform.system() == "Windows":
|
|
||||||
# TODO(rcadene): Make blocking option work for Windows
|
|
||||||
cmd = (
|
|
||||||
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
|
|
||||||
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
|
|
||||||
)
|
|
||||||
|
|
||||||
os.system(cmd)
|
if system == "Darwin":
|
||||||
|
cmd = ["say", text]
|
||||||
|
|
||||||
|
elif system == "Linux":
|
||||||
|
cmd = ["spd-say", text]
|
||||||
|
if blocking:
|
||||||
|
cmd.append("--wait")
|
||||||
|
|
||||||
|
elif system == "Windows":
|
||||||
|
cmd = [
|
||||||
|
"PowerShell",
|
||||||
|
"-Command",
|
||||||
|
"Add-Type -AssemblyName System.Speech; "
|
||||||
|
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')",
|
||||||
|
]
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Unsupported operating system for text-to-speech.")
|
||||||
|
|
||||||
|
if blocking:
|
||||||
|
subprocess.run(cmd, check=True)
|
||||||
|
else:
|
||||||
|
subprocess.Popen(cmd, creationflags=subprocess.CREATE_NO_WINDOW if system == "Windows" else 0)
|
||||||
|
|
||||||
|
|
||||||
def log_say(text, play_sounds, blocking=False):
|
def log_say(text, play_sounds, blocking=False):
|
||||||
|
@ -200,5 +210,18 @@ def get_channel_first_image_shape(image_shape: tuple) -> tuple:
|
||||||
return shape
|
return shape
|
||||||
|
|
||||||
|
|
||||||
def has_method(cls: object, method_name: str):
|
def has_method(cls: object, method_name: str) -> bool:
|
||||||
return hasattr(cls, method_name) and callable(getattr(cls, method_name))
|
return hasattr(cls, method_name) and callable(getattr(cls, method_name))
|
||||||
|
|
||||||
|
|
||||||
|
def is_valid_numpy_dtype_string(dtype_str: str) -> bool:
|
||||||
|
"""
|
||||||
|
Return True if a given string can be converted to a numpy dtype.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Attempt to convert the string to a numpy dtype
|
||||||
|
np.dtype(dtype_str)
|
||||||
|
return True
|
||||||
|
except TypeError:
|
||||||
|
# If a TypeError is raised, the string is not a valid dtype
|
||||||
|
return False
|
||||||
|
|
|
@ -27,11 +27,13 @@ class DatasetConfig:
|
||||||
# You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data
|
# You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data
|
||||||
# keys common between the datasets are kept. Each dataset gets and additional transform that inserts the
|
# keys common between the datasets are kept. Each dataset gets and additional transform that inserts the
|
||||||
# "dataset_index" into the returned item. The index mapping is made according to the order in which the
|
# "dataset_index" into the returned item. The index mapping is made according to the order in which the
|
||||||
# datsets are provided.
|
# datasets are provided.
|
||||||
repo_id: str
|
repo_id: str
|
||||||
|
# Root directory where the dataset will be stored (e.g. 'dataset/path').
|
||||||
|
root: str | None = None
|
||||||
episodes: list[int] | None = None
|
episodes: list[int] | None = None
|
||||||
image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig)
|
image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig)
|
||||||
local_files_only: bool = False
|
revision: str | None = None
|
||||||
use_imagenet_stats: bool = True
|
use_imagenet_stats: bool = True
|
||||||
video_backend: str = "pyav"
|
video_backend: str = "pyav"
|
||||||
|
|
||||||
|
|
|
@ -102,7 +102,7 @@ class TrainPipelineConfig(HubMixin):
|
||||||
|
|
||||||
if not self.resume and isinstance(self.output_dir, Path) and self.output_dir.is_dir():
|
if not self.resume and isinstance(self.output_dir, Path) and self.output_dir.is_dir():
|
||||||
raise FileExistsError(
|
raise FileExistsError(
|
||||||
f"Output directory {self.output_dir} alreay exists and resume is {self.resume}. "
|
f"Output directory {self.output_dir} already exists and resume is {self.resume}. "
|
||||||
f"Please change your output directory so that {self.output_dir} is not overwritten."
|
f"Please change your output directory so that {self.output_dir} is not overwritten."
|
||||||
)
|
)
|
||||||
elif not self.output_dir:
|
elif not self.output_dir:
|
||||||
|
|
|
@ -77,6 +77,13 @@ python lerobot/scripts/control_robot.py record \
|
||||||
--control.reset_time_s=10
|
--control.reset_time_s=10
|
||||||
```
|
```
|
||||||
|
|
||||||
|
- For remote controlled robots like LeKiwi, run this script on the robot edge device (e.g. RaspBerryPi):
|
||||||
|
```bash
|
||||||
|
python lerobot/scripts/control_robot.py \
|
||||||
|
--robot.type=lekiwi \
|
||||||
|
--control.type=remote_robot
|
||||||
|
```
|
||||||
|
|
||||||
**NOTE**: You can use your keyboard to control data recording flow.
|
**NOTE**: You can use your keyboard to control data recording flow.
|
||||||
- Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment.
|
- Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment.
|
||||||
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
|
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
|
||||||
|
@ -85,7 +92,6 @@ python lerobot/scripts/control_robot.py record \
|
||||||
This might require a sudo permission to allow your terminal to monitor keyboard events.
|
This might require a sudo permission to allow your terminal to monitor keyboard events.
|
||||||
|
|
||||||
**NOTE**: You can resume/continue data recording by running the same data recording command and adding `--control.resume=true`.
|
**NOTE**: You can resume/continue data recording by running the same data recording command and adding `--control.resume=true`.
|
||||||
If the dataset you want to extend is not on the hub, you also need to add `--control.local_files_only=true`.
|
|
||||||
|
|
||||||
- Train on this dataset with the ACT policy:
|
- Train on this dataset with the ACT policy:
|
||||||
```bash
|
```bash
|
||||||
|
@ -127,6 +133,7 @@ from lerobot.common.robot_devices.control_configs import (
|
||||||
CalibrateControlConfig,
|
CalibrateControlConfig,
|
||||||
ControlPipelineConfig,
|
ControlPipelineConfig,
|
||||||
RecordControlConfig,
|
RecordControlConfig,
|
||||||
|
RemoteRobotConfig,
|
||||||
ReplayControlConfig,
|
ReplayControlConfig,
|
||||||
TeleoperateControlConfig,
|
TeleoperateControlConfig,
|
||||||
)
|
)
|
||||||
|
@ -188,6 +195,16 @@ def calibrate(robot: Robot, cfg: CalibrateControlConfig):
|
||||||
if robot.is_connected:
|
if robot.is_connected:
|
||||||
robot.disconnect()
|
robot.disconnect()
|
||||||
|
|
||||||
|
if robot.robot_type.startswith("lekiwi") and "main_follower" in arms:
|
||||||
|
print("Calibrating only the lekiwi follower arm 'main_follower'...")
|
||||||
|
robot.calibrate_follower()
|
||||||
|
return
|
||||||
|
|
||||||
|
if robot.robot_type.startswith("lekiwi") and "main_leader" in arms:
|
||||||
|
print("Calibrating only the lekiwi leader arm 'main_leader'...")
|
||||||
|
robot.calibrate_leader()
|
||||||
|
return
|
||||||
|
|
||||||
# Calling `connect` automatically runs calibration
|
# Calling `connect` automatically runs calibration
|
||||||
# when the calibration file is missing
|
# when the calibration file is missing
|
||||||
robot.connect()
|
robot.connect()
|
||||||
|
@ -216,7 +233,6 @@ def record(
|
||||||
dataset = LeRobotDataset(
|
dataset = LeRobotDataset(
|
||||||
cfg.repo_id,
|
cfg.repo_id,
|
||||||
root=cfg.root,
|
root=cfg.root,
|
||||||
local_files_only=cfg.local_files_only,
|
|
||||||
)
|
)
|
||||||
if len(robot.cameras) > 0:
|
if len(robot.cameras) > 0:
|
||||||
dataset.start_image_writer(
|
dataset.start_image_writer(
|
||||||
|
@ -263,8 +279,8 @@ def record(
|
||||||
|
|
||||||
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds)
|
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds)
|
||||||
record_episode(
|
record_episode(
|
||||||
dataset=dataset,
|
|
||||||
robot=robot,
|
robot=robot,
|
||||||
|
dataset=dataset,
|
||||||
events=events,
|
events=events,
|
||||||
episode_time_s=cfg.episode_time_s,
|
episode_time_s=cfg.episode_time_s,
|
||||||
display_cameras=cfg.display_cameras,
|
display_cameras=cfg.display_cameras,
|
||||||
|
@ -272,6 +288,7 @@ def record(
|
||||||
device=cfg.device,
|
device=cfg.device,
|
||||||
use_amp=cfg.use_amp,
|
use_amp=cfg.use_amp,
|
||||||
fps=cfg.fps,
|
fps=cfg.fps,
|
||||||
|
single_task=cfg.single_task,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Execute a few seconds without recording to give time to manually reset the environment
|
# Execute a few seconds without recording to give time to manually reset the environment
|
||||||
|
@ -282,7 +299,7 @@ def record(
|
||||||
(recorded_episodes < cfg.num_episodes - 1) or events["rerecord_episode"]
|
(recorded_episodes < cfg.num_episodes - 1) or events["rerecord_episode"]
|
||||||
):
|
):
|
||||||
log_say("Reset the environment", cfg.play_sounds)
|
log_say("Reset the environment", cfg.play_sounds)
|
||||||
reset_environment(robot, events, cfg.reset_time_s)
|
reset_environment(robot, events, cfg.reset_time_s, cfg.fps)
|
||||||
|
|
||||||
if events["rerecord_episode"]:
|
if events["rerecord_episode"]:
|
||||||
log_say("Re-record episode", cfg.play_sounds)
|
log_say("Re-record episode", cfg.play_sounds)
|
||||||
|
@ -291,7 +308,7 @@ def record(
|
||||||
dataset.clear_episode_buffer()
|
dataset.clear_episode_buffer()
|
||||||
continue
|
continue
|
||||||
|
|
||||||
dataset.save_episode(cfg.single_task)
|
dataset.save_episode()
|
||||||
recorded_episodes += 1
|
recorded_episodes += 1
|
||||||
|
|
||||||
if events["stop_recording"]:
|
if events["stop_recording"]:
|
||||||
|
@ -300,11 +317,6 @@ def record(
|
||||||
log_say("Stop recording", cfg.play_sounds, blocking=True)
|
log_say("Stop recording", cfg.play_sounds, blocking=True)
|
||||||
stop_recording(robot, listener, cfg.display_cameras)
|
stop_recording(robot, listener, cfg.display_cameras)
|
||||||
|
|
||||||
if cfg.run_compute_stats:
|
|
||||||
logging.info("Computing dataset statistics")
|
|
||||||
|
|
||||||
dataset.consolidate(cfg.run_compute_stats)
|
|
||||||
|
|
||||||
if cfg.push_to_hub:
|
if cfg.push_to_hub:
|
||||||
dataset.push_to_hub(tags=cfg.tags, private=cfg.private)
|
dataset.push_to_hub(tags=cfg.tags, private=cfg.private)
|
||||||
|
|
||||||
|
@ -320,9 +332,7 @@ def replay(
|
||||||
# TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset
|
# TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset
|
||||||
# TODO(rcadene): Add option to record logs
|
# TODO(rcadene): Add option to record logs
|
||||||
|
|
||||||
dataset = LeRobotDataset(
|
dataset = LeRobotDataset(cfg.repo_id, root=cfg.root, episodes=[cfg.episode])
|
||||||
cfg.repo_id, root=cfg.root, episodes=[cfg.episode], local_files_only=cfg.local_files_only
|
|
||||||
)
|
|
||||||
actions = dataset.hf_dataset.select_columns("action")
|
actions = dataset.hf_dataset.select_columns("action")
|
||||||
|
|
||||||
if not robot.is_connected:
|
if not robot.is_connected:
|
||||||
|
@ -357,6 +367,10 @@ def control_robot(cfg: ControlPipelineConfig):
|
||||||
record(robot, cfg.control)
|
record(robot, cfg.control)
|
||||||
elif isinstance(cfg.control, ReplayControlConfig):
|
elif isinstance(cfg.control, ReplayControlConfig):
|
||||||
replay(robot, cfg.control)
|
replay(robot, cfg.control)
|
||||||
|
elif isinstance(cfg.control, RemoteRobotConfig):
|
||||||
|
from lerobot.common.robot_devices.robots.lekiwi_remote import run_lekiwi
|
||||||
|
|
||||||
|
run_lekiwi(cfg.robot)
|
||||||
|
|
||||||
if robot.is_connected:
|
if robot.is_connected:
|
||||||
# Disconnect manually to avoid a "Core dump" during process
|
# Disconnect manually to avoid a "Core dump" during process
|
||||||
|
|
|
@ -59,8 +59,8 @@ python lerobot/scripts/control_sim_robot.py record \
|
||||||
```
|
```
|
||||||
|
|
||||||
**NOTE**: You can use your keyboard to control data recording flow.
|
**NOTE**: You can use your keyboard to control data recording flow.
|
||||||
- Tap right arrow key '->' to early exit while recording an episode and go to reseting the environment.
|
- Tap right arrow key '->' to early exit while recording an episode and go to resetting the environment.
|
||||||
- Tap right arrow key '->' to early exit while reseting the environment and got to recording the next episode.
|
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
|
||||||
- Tap left arrow key '<-' to early exit and re-record the current episode.
|
- Tap left arrow key '<-' to early exit and re-record the current episode.
|
||||||
- Tap escape key 'esc' to stop the data recording.
|
- Tap escape key 'esc' to stop the data recording.
|
||||||
This might require a sudo permission to allow your terminal to monitor keyboard events.
|
This might require a sudo permission to allow your terminal to monitor keyboard events.
|
||||||
|
@ -131,7 +131,7 @@ def none_or_int(value):
|
||||||
|
|
||||||
def init_sim_calibration(robot, cfg):
|
def init_sim_calibration(robot, cfg):
|
||||||
# Constants necessary for transforming the joint pos of the real robot to the sim
|
# Constants necessary for transforming the joint pos of the real robot to the sim
|
||||||
# depending on the robot discription used in that sim.
|
# depending on the robot description used in that sim.
|
||||||
start_pos = np.array(robot.leader_arms.main.calibration["start_pos"])
|
start_pos = np.array(robot.leader_arms.main.calibration["start_pos"])
|
||||||
axis_directions = np.array(cfg.get("axis_directions", [1]))
|
axis_directions = np.array(cfg.get("axis_directions", [1]))
|
||||||
offsets = np.array(cfg.get("offsets", [0])) * np.pi
|
offsets = np.array(cfg.get("offsets", [0])) * np.pi
|
||||||
|
@ -445,7 +445,7 @@ if __name__ == "__main__":
|
||||||
type=int,
|
type=int,
|
||||||
default=0,
|
default=0,
|
||||||
help=(
|
help=(
|
||||||
"Number of subprocesses handling the saving of frames as PNGs. Set to 0 to use threads only; "
|
"Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only; "
|
||||||
"set to ≥1 to use subprocesses, each using threads to write images. The best number of processes "
|
"set to ≥1 to use subprocesses, each using threads to write images. The best number of processes "
|
||||||
"and threads depends on your system. We recommend 4 threads per camera with 0 processes. "
|
"and threads depends on your system. We recommend 4 threads per camera with 0 processes. "
|
||||||
"If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses."
|
"If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses."
|
||||||
|
|
|
@ -454,7 +454,7 @@ def _compile_episode_data(
|
||||||
|
|
||||||
|
|
||||||
@parser.wrap()
|
@parser.wrap()
|
||||||
def eval(cfg: EvalPipelineConfig):
|
def eval_main(cfg: EvalPipelineConfig):
|
||||||
logging.info(pformat(asdict(cfg)))
|
logging.info(pformat(asdict(cfg)))
|
||||||
|
|
||||||
# Check device is available
|
# Check device is available
|
||||||
|
@ -499,4 +499,4 @@ def eval(cfg: EvalPipelineConfig):
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
init_logging()
|
init_logging()
|
||||||
eval()
|
eval_main()
|
||||||
|
|
|
@ -175,7 +175,7 @@ def push_dataset_to_hub(
|
||||||
# Robustify when `local_dir` is str instead of Path
|
# Robustify when `local_dir` is str instead of Path
|
||||||
local_dir = Path(local_dir)
|
local_dir = Path(local_dir)
|
||||||
|
|
||||||
# Send warning if local_dir isn't well formated
|
# Send warning if local_dir isn't well formatted
|
||||||
if local_dir.parts[-2] != user_id or local_dir.parts[-1] != dataset_id:
|
if local_dir.parts[-2] != user_id or local_dir.parts[-1] != dataset_id:
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
f"`local_dir` ({local_dir}) doesn't contain a community or user id `/` the name of the dataset that match the `repo_id` (e.g. 'data/lerobot/pusht'). Following this naming convention is advised, but not mandatory.",
|
f"`local_dir` ({local_dir}) doesn't contain a community or user id `/` the name of the dataset that match the `repo_id` (e.g. 'data/lerobot/pusht'). Following this naming convention is advised, but not mandatory.",
|
||||||
|
|
|
@ -72,7 +72,7 @@ def update_policy(
|
||||||
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
|
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
|
||||||
grad_scaler.scale(loss).backward()
|
grad_scaler.scale(loss).backward()
|
||||||
|
|
||||||
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
|
# Unscale the gradient of the optimizer's assigned params in-place **prior to gradient clipping**.
|
||||||
grad_scaler.unscale_(optimizer)
|
grad_scaler.unscale_(optimizer)
|
||||||
|
|
||||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||||
|
|
|
@ -207,12 +207,6 @@ def main():
|
||||||
required=True,
|
required=True,
|
||||||
help="Episode to visualize.",
|
help="Episode to visualize.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
|
||||||
"--local-files-only",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--root",
|
"--root",
|
||||||
type=Path,
|
type=Path,
|
||||||
|
@ -275,10 +269,9 @@ def main():
|
||||||
kwargs = vars(args)
|
kwargs = vars(args)
|
||||||
repo_id = kwargs.pop("repo_id")
|
repo_id = kwargs.pop("repo_id")
|
||||||
root = kwargs.pop("root")
|
root = kwargs.pop("root")
|
||||||
local_files_only = kwargs.pop("local_files_only")
|
|
||||||
|
|
||||||
logging.info("Loading dataset")
|
logging.info("Loading dataset")
|
||||||
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
|
dataset = LeRobotDataset(repo_id, root=root)
|
||||||
|
|
||||||
visualize_dataset(dataset, **vars(args))
|
visualize_dataset(dataset, **vars(args))
|
||||||
|
|
||||||
|
|
|
@ -150,7 +150,7 @@ def run_server(
|
||||||
400,
|
400,
|
||||||
)
|
)
|
||||||
dataset_version = (
|
dataset_version = (
|
||||||
dataset.meta._version if isinstance(dataset, LeRobotDataset) else dataset.codebase_version
|
str(dataset.meta._version) if isinstance(dataset, LeRobotDataset) else dataset.codebase_version
|
||||||
)
|
)
|
||||||
match = re.search(r"v(\d+)\.", dataset_version)
|
match = re.search(r"v(\d+)\.", dataset_version)
|
||||||
if match:
|
if match:
|
||||||
|
@ -158,7 +158,7 @@ def run_server(
|
||||||
if major_version < 2:
|
if major_version < 2:
|
||||||
return "Make sure to convert your LeRobotDataset to v2 & above."
|
return "Make sure to convert your LeRobotDataset to v2 & above."
|
||||||
|
|
||||||
episode_data_csv_str, columns = get_episode_data(dataset, episode_id)
|
episode_data_csv_str, columns, ignored_columns = get_episode_data(dataset, episode_id)
|
||||||
dataset_info = {
|
dataset_info = {
|
||||||
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
||||||
"num_samples": dataset.num_frames
|
"num_samples": dataset.num_frames
|
||||||
|
@ -194,7 +194,7 @@ def run_server(
|
||||||
]
|
]
|
||||||
|
|
||||||
response = requests.get(
|
response = requests.get(
|
||||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl"
|
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl", timeout=5
|
||||||
)
|
)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
# Split into lines and parse each line as JSON
|
# Split into lines and parse each line as JSON
|
||||||
|
@ -218,6 +218,7 @@ def run_server(
|
||||||
videos_info=videos_info,
|
videos_info=videos_info,
|
||||||
episode_data_csv_str=episode_data_csv_str,
|
episode_data_csv_str=episode_data_csv_str,
|
||||||
columns=columns,
|
columns=columns,
|
||||||
|
ignored_columns=ignored_columns,
|
||||||
)
|
)
|
||||||
|
|
||||||
app.run(host=host, port=port)
|
app.run(host=host, port=port)
|
||||||
|
@ -236,6 +237,14 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
|
||||||
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"]
|
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"]
|
||||||
selected_columns.remove("timestamp")
|
selected_columns.remove("timestamp")
|
||||||
|
|
||||||
|
ignored_columns = []
|
||||||
|
for column_name in selected_columns:
|
||||||
|
shape = dataset.features[column_name]["shape"]
|
||||||
|
shape_dim = len(shape)
|
||||||
|
if shape_dim > 1:
|
||||||
|
selected_columns.remove(column_name)
|
||||||
|
ignored_columns.append(column_name)
|
||||||
|
|
||||||
# init header of csv with state and action names
|
# init header of csv with state and action names
|
||||||
header = ["timestamp"]
|
header = ["timestamp"]
|
||||||
|
|
||||||
|
@ -245,16 +254,17 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
|
||||||
if isinstance(dataset, LeRobotDataset)
|
if isinstance(dataset, LeRobotDataset)
|
||||||
else dataset.features[column_name].shape[0]
|
else dataset.features[column_name].shape[0]
|
||||||
)
|
)
|
||||||
header += [f"{column_name}_{i}" for i in range(dim_state)]
|
|
||||||
|
|
||||||
if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]:
|
if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]:
|
||||||
column_names = dataset.features[column_name]["names"]
|
column_names = dataset.features[column_name]["names"]
|
||||||
while not isinstance(column_names, list):
|
while not isinstance(column_names, list):
|
||||||
column_names = list(column_names.values())[0]
|
column_names = list(column_names.values())[0]
|
||||||
else:
|
else:
|
||||||
column_names = [f"motor_{i}" for i in range(dim_state)]
|
column_names = [f"{column_name}_{i}" for i in range(dim_state)]
|
||||||
columns.append({"key": column_name, "value": column_names})
|
columns.append({"key": column_name, "value": column_names})
|
||||||
|
|
||||||
|
header += column_names
|
||||||
|
|
||||||
selected_columns.insert(0, "timestamp")
|
selected_columns.insert(0, "timestamp")
|
||||||
|
|
||||||
if isinstance(dataset, LeRobotDataset):
|
if isinstance(dataset, LeRobotDataset):
|
||||||
|
@ -290,7 +300,7 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
|
||||||
csv_writer.writerows(rows)
|
csv_writer.writerows(rows)
|
||||||
csv_string = csv_buffer.getvalue()
|
csv_string = csv_buffer.getvalue()
|
||||||
|
|
||||||
return csv_string, columns
|
return csv_string, columns, ignored_columns
|
||||||
|
|
||||||
|
|
||||||
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||||
|
@ -317,7 +327,9 @@ def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) ->
|
||||||
|
|
||||||
|
|
||||||
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
||||||
response = requests.get(f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json")
|
response = requests.get(
|
||||||
|
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json", timeout=5
|
||||||
|
)
|
||||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||||
dataset_info = response.json()
|
dataset_info = response.json()
|
||||||
dataset_info["repo_id"] = repo_id
|
dataset_info["repo_id"] = repo_id
|
||||||
|
@ -364,7 +376,7 @@ def visualize_dataset_html(
|
||||||
template_folder=template_dir,
|
template_folder=template_dir,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# Create a simlink from the dataset video folder containg mp4 files to the output directory
|
# Create a simlink from the dataset video folder containing mp4 files to the output directory
|
||||||
# so that the http server can get access to the mp4 files.
|
# so that the http server can get access to the mp4 files.
|
||||||
if isinstance(dataset, LeRobotDataset):
|
if isinstance(dataset, LeRobotDataset):
|
||||||
ln_videos_dir = static_dir / "videos"
|
ln_videos_dir = static_dir / "videos"
|
||||||
|
@ -384,12 +396,6 @@ def main():
|
||||||
default=None,
|
default=None,
|
||||||
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
|
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
|
||||||
"--local-files-only",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--root",
|
"--root",
|
||||||
type=Path,
|
type=Path,
|
||||||
|
@ -445,15 +451,10 @@ def main():
|
||||||
repo_id = kwargs.pop("repo_id")
|
repo_id = kwargs.pop("repo_id")
|
||||||
load_from_hf_hub = kwargs.pop("load_from_hf_hub")
|
load_from_hf_hub = kwargs.pop("load_from_hf_hub")
|
||||||
root = kwargs.pop("root")
|
root = kwargs.pop("root")
|
||||||
local_files_only = kwargs.pop("local_files_only")
|
|
||||||
|
|
||||||
dataset = None
|
dataset = None
|
||||||
if repo_id:
|
if repo_id:
|
||||||
dataset = (
|
dataset = LeRobotDataset(repo_id, root=root) if not load_from_hf_hub else get_dataset_info(repo_id)
|
||||||
LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
|
|
||||||
if not load_from_hf_hub
|
|
||||||
else get_dataset_info(repo_id)
|
|
||||||
)
|
|
||||||
|
|
||||||
visualize_dataset_html(dataset, **vars(args))
|
visualize_dataset_html(dataset, **vars(args))
|
||||||
|
|
||||||
|
|
|
@ -109,7 +109,7 @@ def visualize_image_transforms(cfg: DatasetConfig, output_dir: Path = OUTPUT_DIR
|
||||||
dataset = LeRobotDataset(
|
dataset = LeRobotDataset(
|
||||||
repo_id=cfg.repo_id,
|
repo_id=cfg.repo_id,
|
||||||
episodes=cfg.episodes,
|
episodes=cfg.episodes,
|
||||||
local_files_only=cfg.local_files_only,
|
revision=cfg.revision,
|
||||||
video_backend=cfg.video_backend,
|
video_backend=cfg.video_backend,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -14,21 +14,7 @@
|
||||||
<!-- Use [Alpin.js](https://alpinejs.dev), a lightweight and easy to learn JS framework -->
|
<!-- Use [Alpin.js](https://alpinejs.dev), a lightweight and easy to learn JS framework -->
|
||||||
<!-- Use [tailwindcss](https://tailwindcss.com/), CSS classes for styling html -->
|
<!-- Use [tailwindcss](https://tailwindcss.com/), CSS classes for styling html -->
|
||||||
<!-- Use [dygraphs](https://dygraphs.com/), a lightweight JS charting library -->
|
<!-- Use [dygraphs](https://dygraphs.com/), a lightweight JS charting library -->
|
||||||
<body class="flex flex-col md:flex-row h-screen max-h-screen bg-slate-950 text-gray-200" x-data="createAlpineData()" @keydown.window="(e) => {
|
<body class="flex flex-col md:flex-row h-screen max-h-screen bg-slate-950 text-gray-200" x-data="createAlpineData()">
|
||||||
// Use the space bar to play and pause, instead of default action (e.g. scrolling)
|
|
||||||
const { keyCode, key } = e;
|
|
||||||
if (keyCode === 32 || key === ' ') {
|
|
||||||
e.preventDefault();
|
|
||||||
$refs.btnPause.classList.contains('hidden') ? $refs.btnPlay.click() : $refs.btnPause.click();
|
|
||||||
}else if (key === 'ArrowDown' || key === 'ArrowUp'){
|
|
||||||
const nextEpisodeId = key === 'ArrowDown' ? {{ episode_id }} + 1 : {{ episode_id }} - 1;
|
|
||||||
const lowestEpisodeId = {{ episodes }}.at(0);
|
|
||||||
const highestEpisodeId = {{ episodes }}.at(-1);
|
|
||||||
if(nextEpisodeId >= lowestEpisodeId && nextEpisodeId <= highestEpisodeId){
|
|
||||||
window.location.href = `./episode_${nextEpisodeId}`;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}">
|
|
||||||
<!-- Sidebar -->
|
<!-- Sidebar -->
|
||||||
<div x-ref="sidebar" class="bg-slate-900 p-5 break-words overflow-y-auto shrink-0 md:shrink md:w-60 md:max-h-screen">
|
<div x-ref="sidebar" class="bg-slate-900 p-5 break-words overflow-y-auto shrink-0 md:shrink md:w-60 md:max-h-screen">
|
||||||
<a href="https://github.com/huggingface/lerobot" target="_blank" class="hidden md:block">
|
<a href="https://github.com/huggingface/lerobot" target="_blank" class="hidden md:block">
|
||||||
|
@ -52,25 +38,55 @@
|
||||||
|
|
||||||
<p>Episodes:</p>
|
<p>Episodes:</p>
|
||||||
<!-- episodes menu for medium & large screens -->
|
<!-- episodes menu for medium & large screens -->
|
||||||
<ul class="ml-2 hidden md:block">
|
<div class="ml-2 hidden md:block" x-data="episodePagination">
|
||||||
{% for episode in episodes %}
|
<ul>
|
||||||
|
<template x-for="episode in paginatedEpisodes" :key="episode">
|
||||||
<li class="font-mono text-sm mt-0.5">
|
<li class="font-mono text-sm mt-0.5">
|
||||||
<a href="episode_{{ episode }}" class="underline {% if episode_id == episode %}font-bold -ml-1{% endif %}">
|
<a :href="'episode_' + episode"
|
||||||
Episode {{ episode }}
|
:class="{'underline': true, 'font-bold -ml-1': episode == {{ episode_id }}}"
|
||||||
</a>
|
x-text="'Episode ' + episode"></a>
|
||||||
</li>
|
</li>
|
||||||
{% endfor %}
|
</template>
|
||||||
</ul>
|
</ul>
|
||||||
|
|
||||||
|
<div class="flex items-center mt-3 text-xs" x-show="totalPages > 1">
|
||||||
|
<button @click="prevPage()"
|
||||||
|
class="px-2 py-1 bg-slate-800 rounded mr-2"
|
||||||
|
:class="{'opacity-50 cursor-not-allowed': page === 1}"
|
||||||
|
:disabled="page === 1">
|
||||||
|
« Prev
|
||||||
|
</button>
|
||||||
|
<span class="font-mono mr-2" x-text="` ${page} / ${totalPages}`"></span>
|
||||||
|
<button @click="nextPage()"
|
||||||
|
class="px-2 py-1 bg-slate-800 rounded"
|
||||||
|
:class="{'opacity-50 cursor-not-allowed': page === totalPages}"
|
||||||
|
:disabled="page === totalPages">
|
||||||
|
Next »
|
||||||
|
</button>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
<!-- episodes menu for small screens -->
|
<!-- episodes menu for small screens -->
|
||||||
<div class="flex overflow-x-auto md:hidden">
|
<div class="flex overflow-x-auto md:hidden" x-data="episodePagination">
|
||||||
{% for episode in episodes %}
|
<button @click="prevPage()"
|
||||||
<p class="font-mono text-sm mt-0.5 border-r last:border-r-0 px-2 {% if episode_id == episode %}font-bold{% endif %}">
|
class="px-2 bg-slate-800 rounded mr-2"
|
||||||
<a href="episode_{{ episode }}" class="">
|
:class="{'opacity-50 cursor-not-allowed': page === 1}"
|
||||||
{{ episode }}
|
:disabled="page === 1">«</button>
|
||||||
</a>
|
<div class="flex">
|
||||||
|
<template x-for="(episode, index) in paginatedEpisodes" :key="episode">
|
||||||
|
<p class="font-mono text-sm mt-0.5 px-2"
|
||||||
|
:class="{
|
||||||
|
'font-bold': episode == {{ episode_id }},
|
||||||
|
'border-r': index !== paginatedEpisodes.length - 1
|
||||||
|
}">
|
||||||
|
<a :href="'episode_' + episode" x-text="episode"></a>
|
||||||
</p>
|
</p>
|
||||||
{% endfor %}
|
</template>
|
||||||
|
</div>
|
||||||
|
<button @click="nextPage()"
|
||||||
|
class="px-2 bg-slate-800 rounded ml-2"
|
||||||
|
:class="{'opacity-50 cursor-not-allowed': page === totalPages}"
|
||||||
|
:disabled="page === totalPages">» </button>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
@ -208,6 +224,7 @@
|
||||||
</p>
|
</p>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div>
|
||||||
<table class="text-sm border-collapse border border-slate-700" x-show="currentFrameData">
|
<table class="text-sm border-collapse border border-slate-700" x-show="currentFrameData">
|
||||||
<thead>
|
<thead>
|
||||||
<tr>
|
<tr>
|
||||||
|
@ -230,14 +247,16 @@
|
||||||
<div class="flex gap-x-2 max-w-64 font-semibold px-1 break-all">
|
<div class="flex gap-x-2 max-w-64 font-semibold px-1 break-all">
|
||||||
<input type="checkbox" :checked="isRowChecked(rowIndex)"
|
<input type="checkbox" :checked="isRowChecked(rowIndex)"
|
||||||
@change="toggleRow(rowIndex)">
|
@change="toggleRow(rowIndex)">
|
||||||
<p x-text="`${rowLabels[rowIndex]}`"></p>
|
|
||||||
</div>
|
</div>
|
||||||
</td>
|
</td>
|
||||||
<template x-for="(cell, colIndex) in row">
|
<template x-for="(cell, colIndex) in row">
|
||||||
<td x-show="cell" class="border border-slate-700">
|
<td x-show="cell" class="border border-slate-700">
|
||||||
<div class="flex gap-x-2 w-24 justify-between px-2" :class="{ 'hidden': cell.isNull }">
|
<div class="flex gap-x-2 justify-between px-2" :class="{ 'hidden': cell.isNull }">
|
||||||
|
<div class="flex gap-x-2">
|
||||||
<input type="checkbox" x-model="cell.checked" @change="updateTableValues()">
|
<input type="checkbox" x-model="cell.checked" @change="updateTableValues()">
|
||||||
<span x-text="`${!cell.isNull ? cell.value.toFixed(2) : null}`"
|
<span x-text="`${!cell.isNull ? cell.label : null}`"></span>
|
||||||
|
</div>
|
||||||
|
<span class="w-14 text-right" x-text="`${!cell.isNull ? (typeof cell.value === 'number' ? cell.value.toFixed(2) : cell.value) : null}`"
|
||||||
:style="`color: ${cell.color}`"></span>
|
:style="`color: ${cell.color}`"></span>
|
||||||
</div>
|
</div>
|
||||||
</td>
|
</td>
|
||||||
|
@ -249,6 +268,14 @@
|
||||||
|
|
||||||
<div id="labels" class="hidden">
|
<div id="labels" class="hidden">
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
{% if ignored_columns|length > 0 %}
|
||||||
|
<div class="m-2 text-orange-700 max-w-96">
|
||||||
|
Columns {{ ignored_columns }} are NOT shown since the visualizer currently does not support 2D or 3D data.
|
||||||
|
</div>
|
||||||
|
{% endif %}
|
||||||
|
</div>
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
@ -279,7 +306,6 @@
|
||||||
videosKeys: {{ videos_info | map(attribute='filename') | list | tojson }},
|
videosKeys: {{ videos_info | map(attribute='filename') | list | tojson }},
|
||||||
videosKeysSelected: [],
|
videosKeysSelected: [],
|
||||||
columns: {{ columns | tojson }},
|
columns: {{ columns | tojson }},
|
||||||
rowLabels: {{ columns | tojson }}.reduce((colA, colB) => colA.value.length > colB.value.length ? colA : colB).value,
|
|
||||||
|
|
||||||
// alpine initialization
|
// alpine initialization
|
||||||
init() {
|
init() {
|
||||||
|
@ -452,6 +478,68 @@
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
document.addEventListener('alpine:init', () => {
|
||||||
|
// Episode pagination component
|
||||||
|
Alpine.data('episodePagination', () => ({
|
||||||
|
episodes: {{ episodes }},
|
||||||
|
pageSize: 100,
|
||||||
|
page: 1,
|
||||||
|
|
||||||
|
init() {
|
||||||
|
// Find which page contains the current episode_id
|
||||||
|
const currentEpisodeId = {{ episode_id }};
|
||||||
|
const episodeIndex = this.episodes.indexOf(currentEpisodeId);
|
||||||
|
if (episodeIndex !== -1) {
|
||||||
|
this.page = Math.floor(episodeIndex / this.pageSize) + 1;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
get totalPages() {
|
||||||
|
return Math.ceil(this.episodes.length / this.pageSize);
|
||||||
|
},
|
||||||
|
|
||||||
|
get paginatedEpisodes() {
|
||||||
|
const start = (this.page - 1) * this.pageSize;
|
||||||
|
const end = start + this.pageSize;
|
||||||
|
return this.episodes.slice(start, end);
|
||||||
|
},
|
||||||
|
|
||||||
|
nextPage() {
|
||||||
|
if (this.page < this.totalPages) {
|
||||||
|
this.page++;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
prevPage() {
|
||||||
|
if (this.page > 1) {
|
||||||
|
this.page--;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}));
|
||||||
|
});
|
||||||
|
</script>
|
||||||
|
|
||||||
|
<script>
|
||||||
|
window.addEventListener('keydown', (e) => {
|
||||||
|
// Use the space bar to play and pause, instead of default action (e.g. scrolling)
|
||||||
|
const { keyCode, key } = e;
|
||||||
|
|
||||||
|
if (keyCode === 32 || key === ' ') {
|
||||||
|
e.preventDefault();
|
||||||
|
const btnPause = document.querySelector('[x-ref="btnPause"]');
|
||||||
|
const btnPlay = document.querySelector('[x-ref="btnPlay"]');
|
||||||
|
btnPause.classList.contains('hidden') ? btnPlay.click() : btnPause.click();
|
||||||
|
} else if (key === 'ArrowDown' || key === 'ArrowUp') {
|
||||||
|
const episodes = {{ episodes }}; // Access episodes directly from the Jinja template
|
||||||
|
const nextEpisodeId = key === 'ArrowDown' ? {{ episode_id }} + 1 : {{ episode_id }} - 1;
|
||||||
|
const lowestEpisodeId = episodes.at(0);
|
||||||
|
const highestEpisodeId = episodes.at(-1);
|
||||||
|
if (nextEpisodeId >= lowestEpisodeId && nextEpisodeId <= highestEpisodeId) {
|
||||||
|
window.location.href = `./episode_${nextEpisodeId}`;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
});
|
||||||
</script>
|
</script>
|
||||||
</body>
|
</body>
|
||||||
|
|
||||||
|
|
After Width: | Height: | Size: 219 KiB |
After Width: | Height: | Size: 220 KiB |
After Width: | Height: | Size: 272 KiB |
After Width: | Height: | Size: 186 KiB |
After Width: | Height: | Size: 185 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 127 KiB |
After Width: | Height: | Size: 109 KiB |
After Width: | Height: | Size: 80 KiB |
After Width: | Height: | Size: 88 KiB |
After Width: | Height: | Size: 86 KiB |
After Width: | Height: | Size: 96 KiB |
After Width: | Height: | Size: 84 KiB |
After Width: | Height: | Size: 72 KiB |
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 97 KiB |
After Width: | Height: | Size: 88 KiB |
After Width: | Height: | Size: 42 KiB |
After Width: | Height: | Size: 85 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 61 KiB |
After Width: | Height: | Size: 76 KiB |
After Width: | Height: | Size: 80 KiB |
After Width: | Height: | Size: 48 KiB |
After Width: | Height: | Size: 91 KiB |
After Width: | Height: | Size: 54 KiB |